Movement trajectories are usually recorded as a sequence of discrete movement events described by two parameters: step length (distance) and turning angle (bearing). One of the most widespread methods to record the geocoordinates of each step is by a GPS device. Such devices have limited suitability for recording fine movements of species with low dispersal ability including flightless carabid beetles at small spatio-temporal scales. As an alternative, the distance-bearing approach can avoid the measurement error of GPS units since it uses directly measured distances and compass azimuths. As no quantification of measurement error between distance-bearing and GPS approaches exists so far, we generated artificial fine-scale trajectories and in addition radio-tracked living carabids in a temperate forest and recorded each movement step by both methods. Trajectories obtained from distance-bearing were compared to those obtained by a GPS device in terms of movement parameters. Consequently, both types of trajectories were segmented by state-switching modeling into two distinct movement stages typical for carabids: random walk and directed movement. We found that the measurement error of GPS compared to distance-bearing was 1.878 m ( = 0.181 m) for distances and 31.330° ( = 2.066°) for bearings. Moreover, these errors increased under dense forest canopy and rainy weather. Distance error did not change with increasing distance recorded by distance-bearing but bearings were significantly more sensitive to error at short distances. State-switching models showed only slight, not significant, differences in movement states between the two methods in favor of the random walk in the distance-bearing approach. However, the shape of the GPS-measured trajectories considerably differed from those recorded by distance-bearing caused especially by bearing error at short distances. Our study showed that distance-bearing could be more appropriate for recording movement steps not only of ground-dwelling beetles but also other small animals at fine spatio-temporal scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258227 | PMC |
http://dx.doi.org/10.1002/ece3.7670 | DOI Listing |
Sci Rep
January 2025
Institute for System Dynamics, University of Stuttgart, Waldburgstr. 19, 70563, Stuttgart, Germany.
Including sensor information in medical interventions aims to support surgeons to decide on subsequent action steps by characterizing tissue intraoperatively. With bladder cancer, an important issue is tumor recurrence because of failure to remove the entire tumor. Impedance measurements can help to classify bladder tissue and give the surgeons an indication on how much tissue to remove.
View Article and Find Full Text PDFSci Rep
January 2025
Shandong Yankuang Intelligent Manufacturing Co., Jining, 272000, China.
The hydraulic column is a core component in the coal mine support system, however, the real-time monitoring of the hydraulic column during the service process of the hydraulic support faces challenges. To address these issues, a high-precision stress mapping method of hydraulic column is proposed. The hydraulic column loss function was constructed to guide the data-driven model training, and the cylinder stress mechanism model was established by using the elastic-plastic theory of thick-walled cylinder.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Emergency Medicine, St Michael's Hospital, Toronto, Ontario, Canada.
Introduction: Traumatic injuries are a significant public health concern globally, resulting in substantial mortality, hospitalisation and healthcare burden. Despite the establishment of specialised trauma centres, there remains considerable variability in trauma-care practices and outcomes, particularly in the initial phase of trauma resuscitation in the trauma bay. This stage is prone to preventable errors leading to adverse events (AEs) that can impact patient outcomes.
View Article and Find Full Text PDFJ Sci Med Sport
December 2024
Faculty of Education, University of the Ryukyus, Japan.
Objectives: To examine the validity and reliability of the Simple Motor Competence-check for Kids (SMC-Kids), which was developed to assess motor development in preschool children.
Design: A cross-sectional and repeated-measures design.
Methods: To assess validity, 71 children aged 4-6 years completed the Test of Gross Motor Development-3 (TGMD-3) and SMC-Kids (10 m shuttle run and paper ball throw).
Med Phys
January 2025
National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Respiratory motion during radiotherapy (RT) may reduce the therapeutic effect and increase the dose received by organs at risk. This can be addressed by real-time tracking, where respiration motion prediction is currently required to compensate for system latency in RT systems. Notably, for the prediction of future images in image-guided adaptive RT systems, the use of deep learning has been considered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!