Cobalt polyoxometalates (Co-POMs) have emerged as promising water oxidation catalysts (WOCs), with the added advantage of their molecular nature despite being metal oxide fragments. In comparison with metal oxides, that do not offer well-defined active surfaces, POMs have a controlled, discrete structure that allows for precise correlations between experiment and computational analyses. Thus, beyond highly active WOCs, POMs are also model systems to gain deeper mechanistic understanding on the oxygen evolution reaction (OER). The tetracobalt Weakley sandwich [Co (HO)(B-α-PWO)] () has been one of the most extensively studied. We have compared its activity with that of the iron analog [Fe (HO)(B-α-PWO)] () looking for the electronic effects determining their activity. Furthermore, the effect of POM nuclearity was also investigated by comparison with the iron- and cobalt-monosubstituted Keggin clusters. Electrocatalytic experiments employing solid state electrodes containing the POMs and the corresponding computational calculations demonstrate that Co-POMs display better WOC activity than the Fe derivatives. Moreover, the activity of POMs is less influenced by their nuclearity, thus Weakley sandwich moieties show slightly improved WOC characteristics than Keggin clusters. In good agreement with the experimental data, computational methods, including p values, confirm that the resting state for Fe-POMs in neutral media corresponds to the (Fe-OH) species. Overall, the proposed reaction mechanism for is analogous to that found for , despite their electronic differences. The potential limiting step is a proton-coupled electron transfer event yielding the active (Fe[double bond, length as m-dash]O) species, which receives a water nucleophilic attack to form the O-O bond. The latter has activation energies slightly higher than those computed for the Co-POMs, in good agreement with experimental observations. These results provide new insights for the accurate understanding of the structure-reactivity relationships of polyoxometalates in particular, and or metal oxides in general, which are of utmost importance for the development of new bottom-up synthetic approaches to design efficient, robust and non-expensive earth-abundant water oxidation catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246111 | PMC |
http://dx.doi.org/10.1039/d1sc01016f | DOI Listing |
Chemistry
December 2024
Harbin Institute of Technology - Weihai, School of Marine Science and Technoogy, No. 2 West Road, 264209, Weihai, CHINA.
Disulfide bonds (S-S) play a critical role in modern biochemistry, organic synthesis and prebiotic chemistry. Traditional methods for synthesizing disulfide bonds often rely on oxygen, alkali, and metal catalysts. Herein, thiol groups involved in amino acids and peptides were spontaneously converted into symmetrical and unsymmetrical disulfide bonds within water microdroplets, without the need for catalysts or oxygen, and under room temperature.
View Article and Find Full Text PDFOrg Lett
December 2024
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
Although methods for synthesizing chiral phosphorus scaffolds are available, the potential of this molecular chirality remains largely unexplored. Herein, we present a remote desymmetrization of prochiral biaryl phosphine oxides through an organocatalytic asymmetric arylation. This metal-free approach enables the efficient synthesis of a wide range of densely functionalized P(V)-stereogenic compounds with good to excellent yields and satisfactory enantioselectivities.
View Article and Find Full Text PDFRecent years have witnessed an intense effort to unravel magnetic field effects in electrocatalysis, as they can enhance the performance of common electrocatalysts. Both experimental and theoretical studies have shown that magnetic fields may affect, among others, the macroscopic spin-orbital ordering, charge transport, bubble release, and electron transfer kinetics. This paper highlights Electrochemical Impedance Spectroscopy (EIS) as a tool to analyze and separate the effects of magnetic field on both the oxygen reduction and evolution reactions at cobalt iron oxide electrodes.
View Article and Find Full Text PDFChemistry
December 2024
Osaka University, Graduate School of Pharmaceutical Sciences, 1-6, Yamada-oka, 565-0871, Osaka, JAPAN.
Deuterated molecules are of growing interest because of the specific characteristics of deuterium, such as stronger C-D bonds being stronger than C-H bonds. Polyethylene glycols (PEGs) are widely utilized in scientific fields (e.g.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Zhongshan Road 457., 116023, Dalian, CHINA.
The photocatalytic oxidation of water with gaseous oxygen is environmentally benign for the synthesis of hydrogen peroxide (H2O2), but it is currently constrained by the inadequate supply of gaseous oxygen at the catalyst surface in a solid-liquid-gas triple-phase reaction system. Herein, we address this challenge by employing the zeolite encapsulated catalysts that efficiently enrich gaseous oxygen and accelerate the H2O2 synthesis in in aqueous conditions. We focus on the classical titania photocatalyst, encapsulating it within siliceous MFI zeolite crystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!