Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To meet the growing demand for complementary and alternative treatment for malaria, manufacturers produce several antimalarial herbal medicinal products. Herbal medicinal products regulation is difficult due to their complex chemical nature, requiring cumbersome, expensive, and time-consuming methods of analysis. The aim of this study was to develop a simple spectroscopic method together with a chemometric model for the classification and the identification of expired liquid antimalarial herbal medicinal products. Principal component analysis model was successfully used to distinguish between different herbal medicinal products and identify expired products. Principal component analysis showed a clear class separation between all five herbal medicinal products (HMP) studied, with explained variance for first and second principal components as 37.51% and 26.38%, respectively, while the third principal component had 18.74%. Support vector machine classification gave specificity and accuracy of 1.00 (100%) for training set data for all the products. The validation set HMP1, HMP2, and HMP3 had sensitivity, specificity, and accuracy of 1.00. HMP4 and HMP5 had sensitivity and specificity of 0.90 and 1.00, respectively, and an accuracy of 0.98. The support vector machine classification and principal component analysis models were successfully used to identify expired herbal medicinal products. This strategy can be used for rapid field detection of expired liquid antimalarial herbal medicinal products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253648 | PMC |
http://dx.doi.org/10.1155/2021/5592217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!