Osteopontin (OPN) is a multifunctional phosphoprotein that is expressed in different types of cancers, including melanoma. OPN overexpression is associated with tumor progression and metastasis formation; however, the role of OPN in cell invasion and metastasis formation is not completely understood. In this study we aimed to define OPN expression in melanoma tissues and cell lines and investigate the effect of OPN expression on cell proliferation and invasion after inhibiting OPN expression with small interfering RNA (siRNA). OPN gene expression was determined by qRT-PCR, while protein expression was examined using a Proteome Profiler Oncology Array. siRNA-mediated OPN knockdown led to decreased OPN expression in melanoma cell lines, which was associated with decreased cell proliferation and invasion. Proteome profile analysis revealed significantly different protein expression between the original and transfected cell lines. The altered expression of the differently expressed proteins was validated at the mRNA level. Furthermore, OPN-specific siRNA was able to reduce OPN expression and inhibit the invasiveness of melanoma cells. Our results revealed for the first time that silencing the OPN gene influences proliferation and invasion of melanoma cells by effecting EGFR, tenascin C, survivin, galectin-3 and enolase 2 expression. To predict protein-protein interactions along with putative pathways we used STRING analysis for the differentially expressed proteins. These proteins formed multiple clusters, including extracellular matrix organization, regulation of angiogenesis, cell death and cell migration, PI3K-Akt, MAPK and focal adhesion signaling pathways. Taken together these data suggest that OPN might be an ideal target for drug development and therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262222 | PMC |
http://dx.doi.org/10.3389/pore.2021.581395 | DOI Listing |
J Exp Clin Cancer Res
December 2024
Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease characterized by a heterogeneous tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) constitute the major innate immune population in the TIME where they facilitate crucial regulatory processes that participate in malignant tumor progression. SPP1 + macrophages (SPP1 + Macs) are found in many cancers, but their effects on HNSCC remain unknown.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
Guangzhou University of Chinese Medicine, 510006 Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) 510120 Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research Guangzhou University of Chinese Medicine, 510120 Guangzhou, China. Electronic address:
Ethnopharmacological Relevance: Ankylosing spondylitis (AS) is a chronic rheumatic immune disease characterized by high disability rates, significantly affecting patients' quality of life. BuShen-QiangDu-ZhiLv Decoction (BQZD), developed by the renowned traditional Chinese medicine practitioner Jiao Shude, has been traditionally used for AS treatment. However, the bioactive components and the precise mechanisms underlying BQZD's therapeutic effects remain largely unexplored.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
Plasma nitriding is one of the surface modifications that show more effectiveness than other methods. In this study, the plasma-based ion implantation (PBII) technique was performed on the surface of titanium alloy (Ti-6Al-4V, Ti64) using a mixture of nitrogen (N) and argon (Ar), resulting in a plasma-nitrided surface (TiN-Ti64). The surface composition of the TiN-Ti64 was verified through X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China.
In this study, we investigated the effects of infant fecal fermentation-derived metabolites of digested osteopontin (OPN) and 2'-fucosyllactose (2'-FL), either individually or in combination, on intestinal barrier function using a Caco-2/HT-29 coculture cell model. Our results suggested that the OPN/2'-FL (1:36-1:3) cofermentation metabolites improved epithelial barrier integrity by supporting the mRNA and protein expression of occludin, claudin-1, claudin-2, ZO-1, and ZO-2. All of the OPN/2'-FL treatments decreased the production of IL-1β, IL-6, and TNF-α, while the OPN/2'-FL ratio increased IL-10 production by inhibiting activation of the MyD88/IκB-α/NF-κB signaling pathway.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark. Electronic address:
Insufficient absorption of iron and the consequent development of iron deficiency have serious health consequences. Hence, identification and development of iron delivery systems that can increase the bioavailability and uptake of dietary iron are important. Osteopontin (OPN) is an acidic and highly phosphorylated integrin-binding protein found in milk where it exists as a full-length protein and as N-terminally derived fragments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!