Using density functional theory (DFT), we performed theoretical investigation on structural, energetic, electronic, and magnetic properties of pure armchair silicene nanoribbons with edges terminated with hydrogen atoms (ASiNRs:H), and the absorptions of silicon (Si) atom(s) on the top of ASiNRs:H. The calculated results show that Si atoms prefer to adsorb on the top site of ASiNRs:H and form the single- and/or di-adatom defects depending on the numbers. Si absorption defect(s) change electronic and magnetic properties of ASiNRs:H. Depending on the adsorption site the band gap of ASiNRs:H can be larger or smaller. The largest band gap of 1 Si atom adsorption is 0.64 eV at site 3, the adsorption of 2 Si atoms has the largest band gap of 0.44 eV at site 1-D, while the adsorption at sites5 and 1-E turn into metallic. The formation energies of Si adsorption show that adatom defects in ASiNRs:H are more preferable than pure ASiNRs:H with silicon atom(s). 1 Si adsorption prefers to be added on the top site of a Si atom and form a single-adatom defect, while Si di-adatom defect has lower formation energy than the single-adatom and the most energetically favorable adsorption is at site 1-F. Si adsorption atoms break spin-degeneracy of ASiNRs:H lead to di-adatom defect at site 1-G has the highest spin moment. Our results suggest new ways to engineer the band gap and magnetic properties silicene materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277868 | PMC |
http://dx.doi.org/10.1038/s41598-021-93465-5 | DOI Listing |
Langmuir
January 2025
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
Realizing reliable online detection of characteristic gases (H, CH, CO, and CO) in lithium-ion batteries is crucial to maintain the safe and stable operation of power equipment and new energy storage power plants. In this study, transition metal Pt ( = 1, 3, and 4) clusters are attached to MoSe nanosheets for the first time based on density functional theory using the perfect crystalline facet modification method, and the adsorption characteristics and electronic behaviors of H, CH, CO, and CO are investigated and enhanced. The results show that Pt ( = 1, 3, and 4) is reliably chemically connected to the substrate without any significant deformation of the geometry.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
National Engineering Research Centre for Mg Alloys, Chongqing University, Chongqing 400044, PR China.
Rechargeable Mg batteries are promising candidates for achieving considerable high-energy-density. Enhancing the energy density can be achieved by integrating metallic Mg anodes with conversion-type cathode materials, which are characterized by multi-electron transfer process and elevated specific capacities in contrast to intercalation-type materials. Despite these advantages, the conversion-type cathodes still have some challenges of substantial volume expansion, sluggish diffusion kinetics and intricate mesophase evolution during repeated electrochemical reactions.
View Article and Find Full Text PDF3 Biotech
February 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014 India.
Unlabelled: Coumarin derivatives are one of the naturally occurring bioactive molecule. Dihydropyrano coumarins are one of the medicinally important derivatives of coumarin which have been reported to exhibit various bioactivity. However, there are no reports on their antihyperglycemic activities.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Theoretical and Applied Research, Duy Tan University Ha Noi 100000 Vietnam
In this work, Ge vacancies and doping with transition metals (Mn and Fe) are proposed to modulate the electronic and magnetic properties of GeP monolayers. A pristine GeP monolayer is a non-magnetic two-dimensional (2D) material, exhibiting indirect gap semiconductor behavior with an energy gap of 1.34(2.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi' an, 710069, PR, China.
Thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid (HThz), a thiazolothiazole (TTz) derivative with carboxylic acid groups, was synthesized as a ligand for the creation of five MOFs, each associated with distinct metal ions including Ag, Mn, Co, Zn, and Cu. The cathodic electrochemiluminescence (ECL) of HThz and the resulting MOFs was investigated. HThz was found to generate ECL signals, but this process was heavily reliant on potassium persulfate (KSO) as a co-reactant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!