Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Binding energies of different nitrile solvents and their utilization for CuCN formation were investigated through quantum chemical calculations. A pulsed laser ablation in liquid (PLAL) method for CuCN synthesis was developed herein. Initially, the interaction between the pulsed laser and the Cu-target generated Cu-ions and electrons at the point of contact. The laser beam also exhibited sufficient energy to dissociate the bonds of the respective solvents. In the case of acetonitrile, the oxidized Cu-ions bonded with CN to produce CuCN with a cube-like surface structure. Other nitrile solvents generated spherically-shaped Cu@graphitic carbon (Cu@GC) nanoparticles. Thus, the production of CuCN was favorable only in acetonitrile due to the availability of the cyano group immediately after the fragmentation of acetonitrile (CH and CN) under PLAL. Conversely, propionitrile and butyronitrile released large amounts of hydrocarbons, which deposited on Cu NPs surface to form GC layers. Following the encapsulation of Cu NPs with carbon shells, further interaction with the cyano group was not possible. Subsequently, theoretical study on the binding energies of nitrile solvents was confirmed by highly correlated basic sets of B3LYP and MP2 which results were consistent with the experimental outcomes. The findings obtained herein could be utilized for the development of novel metal-polymer materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277773 | PMC |
http://dx.doi.org/10.1038/s41598-021-93768-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!