Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rec.2021.05.016 | DOI Listing |
J Cardiovasc Magn Reson
December 2024
School of Biomedical Engineering and Imaging Sciences-Faculty of Life Sciences and Medicine, King's College London, London, UK.
With a prevalence of 2-3% in the general population, mitral valve prolapse (MVP) is the most common valvular heart disease. The clinical course is benign in the majority of patients, although severe mitral regurgitation, heart failure, and sudden cardiac death affect a non-negligible subset of patients. Imaging of MVP was confined to echocardiography until a few years ago when it became apparent that cardiovascular magnetic resonance (CMR) could offer comparative advantages for detecting and quantifying mitral valve abnormalities alongside tissue myocardial characterization.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
December 2024
Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, E Chicago Ave, Box 21. Chicago, IL, 60611.
Background: Multiparametric cardiovascular magnetic resonance (CMR) has an emerging role in non-invasive surveillance of pediatric heart transplant recipients (PHTR). Higher myocardial T2, higher extracellular volume fraction (ECV), and late gadolinium enhancement (LGE) have been associated with adverse clinical outcomes in adult heart transplant recipients. This study's purpose was to investigate the prognostic value of CMR-derived T1- and T2-mapping, ECV, and LGE for clinical outcomes in PHTR.
View Article and Find Full Text PDFProbl Radiac Med Radiobiol
December 2024
ASST Ovest Milanese, Neuroimaging Unit, Legnano (Milan), Italy, 20025Centro Diagnostico Italiano S.p.A., Department of Diagnostic Imaging and Stereotactic Radiosurgery, Milan, Italy.
Unlabelled: Brain morphology understanding is essential for radiologists, neurologists, and neurosurgeons. Historically, anatomical learning of brain relied on ex vivo specimens. Modern in vivo brain CT and MRI provide spatial, three-dimensional imaging capabilities crucial to help diagnose diseases, plan surgeries, and monitor treatment progress.
View Article and Find Full Text PDFInvest Radiol
October 2024
From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).
The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
December 2024
Department of Cardiology, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-Ku, Fukuoka City, Fukuoka, 813-0017, Japan.
Fontan-associated liver disease (FALD) may be caused by chronic liver congestion due to high central venous pressure (CVP). Recently, the usefulness of liver native T1 mapping in magnetic resonance imaging (MRI) in adulthood has been reported. To evaluate the usefulness of native liver T1 mapping in children with congenital heart disease (CHD), we investigated the utility of native liver T1 relaxation time (LT1) in pediatric Fontan patients in comparison to other CHDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!