To mitigate the negative effects of land use developments, the current study focused on the hydrological connectivity within the landscape ecological network of Gharesou watershed, Iran, using Graph theory. Thus, scenarios of the future land use arrangements were used for the objective assessment of the effects of patterns on the ecological structures and functions, the main target being runoff control. Hydrological connectivity was analyzed using runoff source network, stream network and its buffer zone. Also, functions like permeability and runoff production potential were analyzed for the future scenarios. Following the ranking of the connectivity significance of the hydrological graphs elements, the ecosystem services hotspots and incompatible land uses were demonstrated. Subsequent assessments of the elements of runoff source networks using Circuit Theory helped identify the future critical areas. Analyses of the hydrological graphs and the runoff source network represented the amount and location of critical areas in each development scenario as well as the imposed hydrological costs. The hydrological and ecological land use costs were used in the process of land use optimization through Simulating Annealing algorithm (SA). Using these costs in the land use planning process resulted in detecting areas which may experience disturbance later in future. Finally, the results of the optimization of scenarios showed how land use arrangements in each scenario can be optimized to simultaneously include the ecological suitability (vertical relationships) and the ecological network relationships (horizontal relationships).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.113169 | DOI Listing |
Sci Total Environ
January 2025
Programas Multidisciplinarios de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #201, 2do Piso, Zona Universitaria, C. P. 78000 San Luis Potosí, Mexico. Electronic address:
Spatio-temporal analyses of environmental and social criteria in the context of climate change, facilitate understanding of how historical and current conditions have influenced watershed health. Previous studies have analyzed watershed health, but very few have integrated fuzzy logic with the CRITIC method (Criteria Importance Through Intercriteria Correlation), which enables us to explore alternatives to improve watershed performance. The objective of this study was to evaluate changes in watershed health through historical and projected climate change scenario in the tropical Santa Cruz watershed in Aquismón, S.
View Article and Find Full Text PDFSci Rep
January 2025
School of Ocean Engineering and Technology/Institute of Estuarine and Coastal Research, Sun Yat-sen University, Guangzhou, 510275, China.
The Yangtze River-Dongting Lake link has gotten a lot of attention as a because of the Three Gorges Project. However, the hydrological dynamic process and future direction of the river-lake interaction in the context of sediment reduction are yet unknown. Based on Dongting Lake Basin runoff and sediment data from 1961 to 2020, as well as field monitoring data of turbidity and flow velocity from Yichang to Chenglingji section of the Yangtze River, this paper examines the runoff and sediment variation law and hydrological dynamic process of Chenglingji, the only outlet connecting Dongting Lake to the Yangtze River, and reveals the development trend of the river-lake relationship.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, USA.
We present the genomes of nine cultured microbes isolated from two freshwater sites in Wellesley, MA. The dataset is useful for exploring genomic diversity among freshwater taxa, including , , , and .
View Article and Find Full Text PDFEnviron Pollut
December 2024
School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic pollutants widely present in various environmental media. Some PAHs have carcinogenic, teratogenic, and mutagenic effects. Urban lakes are severely polluted by PAHs due to human activities.
View Article and Find Full Text PDFWater Res
December 2024
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China. Electronic address:
Global warming has intensified the distinction between dry and wet seasons in monsoonal climates. The synergistic effect of high temperatures and rainfall during the wet season promotes the release of endogenous nitrogen (N) and eutrophication within lake ecosystems. However, the seasonal variations in sediments N speciation and bioavailability, and their intrinsic connection to release potential, remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!