One mechanism for reactivation of androgen receptor (AR) activity after androgen deprivation therapy in castration-resistant prostate cancer (CRPC) is expression of splice variants such as ARv7 that delete the ligand binding domain and have constitutive activity. Exogenous overexpressed ARv7 can function as a homodimer or heterodimer with full length AR (ARfl), which is highly expressed with ARv7 in CRPC. However, the extent to which endogenous ARv7 function is dependent on heterodimerization with ARfl remains to be determined. We used double-crosslinking to stabilize AR complexes on chromatin in a CRPC cell line expressing endogenous ARfl and ARv7 (LN95 cells), and established that only trace levels of ARfl were associated with ARv7 on chromatin. Consistent with this result, depletion of ARfl with an AR degrader targeting the AR ligand binding domain did not decrease ARv7 binding to chromatin or its association with HOXB13, but did decrease overall AR transcriptional activity. Comparable results were obtained in CWR22RV1 cells, another CRPC cell line expressing ARfl and ARv7. These results indicate that ARv7 function in CRPC is not dependent on ARfl, and that both contribute independently to overall AR activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403646PMC
http://dx.doi.org/10.1016/j.canlet.2021.07.013DOI Listing

Publication Analysis

Top Keywords

arv7 function
12
arv7
9
androgen receptor
8
full length
8
prostate cancer
8
ligand binding
8
binding domain
8
crpc cell
8
cell expressing
8
arfl arv7
8

Similar Publications

Prostate cancer (PCa) is the second most common cancer among men worldwide. The main screening tool remains the prostate-specific antigen (PSA), which shows significant limitations, including poor sensitivity/specificity. Therefore, establishing accurate non-invasive diagnostic biomarkers remains an unmet clinical need in PCa.

View Article and Find Full Text PDF

Increased nuclear factor I-mediated chromatin access drives transition to androgen receptor splice variant dependence in prostate cancer.

Cell Rep

December 2024

Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in castration-resistant prostate cancer, but the extent to which they drive AR activity is unclear. We generated a subline of VCaP cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ). AR activity in VCaP16 is driven by ARv7, independently of full-length AR (ARfl), and its cistrome and transcriptome mirror those of ARfl in VCaP cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!