Bacteria and their viruses (bacteriophages or phages) interact antagonistically and beneficially in polymicrobial communities such as the guts of animals. These interactions are multifaceted and are influenced by environmental conditions. In this review, we discuss phage-bacteria interactions as they relate to the complex environment of the gut. Within the mammalian and invertebrate guts, phages and bacteria engage in diverse interactions including genetic coexistence through lysogeny, and phages directly modulate microbiota composition and the immune system with consequences that are becoming recognized as potential drivers of health and disease. With greater depth of understanding of phage-bacteria interactions in the gut and the outcomes, future phage therapies become possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484061PMC
http://dx.doi.org/10.1146/annurev-virology-091919-101238DOI Listing

Publication Analysis

Top Keywords

interactions gut
8
phage-bacteria interactions
8
bacteriophage-bacteria interactions
4
gut invertebrates
4
invertebrates mammals
4
mammals bacteria
4
bacteria viruses
4
viruses bacteriophages
4
bacteriophages phages
4
phages interact
4

Similar Publications

Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential.

Best Pract Res Clin Rheumatol

January 2025

Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:

Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.

View Article and Find Full Text PDF

Background: Low-dose amitriptyline, a tricyclic antidepressant (TCA), was superior to placebo for irritable bowel syndrome (IBS) in the AmitripTyline at Low-dose ANd Titrated for Irritable bowel syndrome as Second-line treatment (ATLANTIS) trial.

Objective: To perform post hoc analyses of ATLANTIS for predictors of response to, and tolerability of, a TCA.

Design: ATLANTIS randomised 463 adults with IBS to amitriptyline (232) or placebo (231).

View Article and Find Full Text PDF

Antimicrobial regime for gut microbiota depletion in experimental mice models.

Methods Cell Biol

January 2025

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain; Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain. Electronic address:

Mice models serve as a valuable tool to study microbiome-immune system interactions. While the use of germ-free mice may represent the gold-standard method, antibiotic-based microbiome depletion provides a more cost-efficient and feasible system. The protocol here in presented provides a mild antimicrobial regime to deplete basal microbiota in 8-week-old C57BL/6 mice, aiming to ensure reproducibility in microbiota studies.

View Article and Find Full Text PDF

Lifelong partners: Gut microbiota-immune cell interactions from infancy to old age.

Mucosal Immunol

January 2025

Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, United States. Electronic address:

Our immune system and gut microbiota are intricately coupled from birth, both going through maturation during early life and senescence during aging almost in a synchronized fashion. The symbiotic relationship between the human host and microbiota is critically dependent on a healthy immune system to keep our microbiota in check; while the microbiota provides essential functions to promote the development and fitness of our immune system. The partnership between our immune system and microbiota is particularly important during early life, in which microbial ligands and metabolites shape the development of the immune cells and immune tolerance; during aging, having sufficient beneficial gut bacteria is critical for the maintenance of intact mucosal barriers, immune metabolic fitness, and strong immunity against pathogens.

View Article and Find Full Text PDF

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!