The changes in the transport behavior of a microswimmer before and after cargo loading are crucial to understanding and control of the motion of a biohybrid microbot. In this work, we show the change in swimming behavior of biflagellated microalgae picking up a 4.5 μm polystyrene microbead upon collision. The microswimmer changed from linear forward motion into helical motion upon the attachment of the cargo and swam with a decreased swimming velocity. We revealed the helical motion of the microswimmer upon cargo loading due to suppression of flagella by image analysis of magnified time-lapse images of with one microbead attached at the anterior end (between the flagella). Furthered suppression on the flagellum imposed by the loading of the second cargo has led to increased oscillation per displacement traveled and decreased swimming velocity. Moreover, the microswimmer with a microbead attached at the posterior end swam with swimming velocity close to free swimming microalgae and did not exhibit helical swimming behavior. The experimental results and analysis showed that the loading location of the cargo has a great influence over the swimming behavior of the microswimmer. Furthermore, the work balance calculation and mathematical analysis based on Lighthill's model are well consistent with our experimental findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c01345 | DOI Listing |
Phys Rev Lett
October 2024
Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
Biological microswimmers alter their swimming trajectories to follow the direction of an applied electric field, exhibiting electrotaxis. We show that synthetic active droplet microswimmers also autonomously change swimming trajectories in microchannels, even undergoing "U-turns," in response to an electric field, mimicking electrotaxis. We exploit such electrotaxis, in the presence of an external flow, to robustly tune the swimming trajectory of active droplets between wall-adjacent, oscillatory, and channel centerline swimming.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
Microswimmers are considered promising candidates for active cargo delivery to benefit a wide spectrum of biomedical applications. Yet, big challenges still remain in designing the microswimmers with effective propelling, desirable loading and adaptive releasing abilities all in one. Inspired by the morphology and biofunction of spermatozoa, we report a one-step formation strategy of polymorphous sperm-like magnetic microswimmers (PSMs) by developing a vortex turbulence-assisted microfluidics (VTAM) platform.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2023
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China.
Swarms of self-propelled micromotors can mimic the processes of natural systems and construct artificial intelligent materials to perform complex collective behaviors. Compared to self-propelled Janus micromotors, the isotropic colloid motors, also called micromotors or microswimmers, have advantages in self-assembly to form micromotor swarms, which are efficient in resistance to external disturbance and the delivery of large quantity of cargos. In this minireview, we summarize the fundamental principles and interactions for the assembly of isotropic active particles to generate micromotor swarms.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2023
Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland.
Artificial microswimmers, i.e. colloidal scale objects capable of self-propulsion, have garnered significant attention due to their central role as models for out of equilibrium systems.
View Article and Find Full Text PDFSmall Methods
December 2023
Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
The bottom-up reconstitution of proteins for their modular engineering into synthetic cellular systems can reveal hidden protein functions in vitro. This is particularly evident for the bacterial Min proteins, a paradigm for self-organizing reaction-diffusion systems that displays an unexpected functionality of potential interest for bioengineering: the directional active transport of any diffusible cargo molecule on membranes. Here, the MinDE protein system is reported as a versatile surface patterning tool for the rational design of synthetically assembled 3D systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!