G-Protein-coupled receptors (GPCRs) belong to an important family of integral membrane receptor proteins that are essential for a variety of transmembrane signaling process, such as vision, olfaction, and hormone responses. They are also involved in many human diseases (Alzheimer's, heart diseases, etc.) and are therefore common drug targets. Thus, understanding the details of the GPCR activation process is a task of major importance. Various types of crystal structures of GPCRs have been solved either at stable end-point states or at possible intermediate states. However, the detailed mechanism of the activation process is still poorly understood. For example, it is not completely clear when the nucleotide release from the G protein occurs and how the key residues on α5 contribute to the coupling process and further affect the binding specificity. In this work we show by free energy analysis that the guanosine diphosphate (GDP) molecule could be released from the G protein when the binding cavity is half open. This occurs during the transition to the G open state, which is the rate-determining step in the system conformational change. We also account for the experimentally observed slow-down effects by the change of the reaction barriers after mutations. Furthermore, we identify potential key residues on α5 and validated their significance by site-directed mutagenesis, which illustrates that computational works have predictive value even for complex biophysical systems. The methodology of the current work may be applied to other biophysical systems of interest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c03696 | DOI Listing |
JMIR Form Res
January 2025
Department of Computer Science, University of California, Irvine, Irvine, CA, United States.
Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8526, Japan.
Exploring electronic states in actinide compounds is a critical aspect of nuclear science. However, considering relativistic effects and electron correlation in theoretical calculations poses a complex challenge. To tackle this, we developed the CASPT2/RASPT2 program along with the DIRAC program, enabling calculations of electron correlation methods using multiconfigurational perturbation theory with various relativistic Hamiltonians.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.
View Article and Find Full Text PDFBlood
January 2025
Medical University of Vienna, Vienna, Austria.
In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.
View Article and Find Full Text PDFBlood
January 2025
State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.
Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!