The increasing interest in developing safe and sustainable energy storage systems has led to the rapid rise in attention to superconcentrated electrolytes, commonly called water-in-salt (WiS). Several works indicate that the transport properties of these liquid electrolytes are related to the presence of nanodomains, but a detailed characterization of such structure is missing. Here, the structural nano-heterogeneity of lithium WiS electrolytes, comprising lithium trifluoromethanesulfonate (LiTf) and bis(trifluoromethanesulfonyl)imide (LiTFSI) solutions as a function of concentration and temperature, was assessed by resorting to the analysis of small-angle neutron scattering (SANS) patterns. Variations with the concentration of a correlation peak, rather temperature-independent, in a range around 3.5-5 nm indicate that these electrolytes are composed of nanometric water-rich channels percolating a 3D dispersing anion-rich network, with differences between Tf and TFSI anions related to their distinct volumes and interactions. Furthermore, a common trend was found for both systems' morphology above a salt volume fraction of ∼0.5. These results imply that the determining factor in the formation of the nanostructure is the salt volume fraction (related to the anion size), rather than its molality. These findings may represent a paradigm shift for designing WiS electrolytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c01737 | DOI Listing |
J Chem Theory Comput
January 2025
IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.
Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.
View Article and Find Full Text PDFPhysiol Plant
January 2025
School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia.
The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.
Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
The current chemotherapy treatments for liver cancer have shown limited effectiveness. Therefore, there is an urgent need to develop new drugs to combat this disease more effectively. This study reports synthesis of cobalt oxide nanoparticles coated with glucose, and conjugated with Ellagic acid.
View Article and Find Full Text PDFWorld J Urol
January 2025
Department of Urology, AP-HM, North Hospital, Marseille, France.
Introduction: Water vapor thermal therapy (WVTT; REZUM™; Boston, USA) offers symptom relief with reduced risks of complications in patients with lower urinary tract symptoms (LUTS) related to benign prostatic obstruction (BPO). WVTT therapy has been validated in the pivotal study in men with smaller prostates (< 80 cc). Yet, its feasibility for larger prostates (≥ 80 cc) remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!