Atmospheric water harvesting, triphasic detection of water contaminants, and advanced antiforgery measures are among important global agendas, where metal-organic frameworks (MOFs), as an incipient class of multifaceted materials, can affect substantial development of individual properties at the interface of tailor-made fabrication. The chemically robust and microporous MOF, encompassing contrasting pore functionalization, exhibits an S-shaped water adsorption curve at 300 K with a steep pore-filling step near / = 0.5 and shows reversible uptake-release performance. Density functional theory (DFT) studies provide atomistic-level snapshots of sequential insertion of HO molecules inside the porous channels and also portray H-bonding interactions with polar functional sites in the two-fold interpenetrated structure. The highly emissive attribute with an electron-pull system benefits the fast-responsive framework and highly regenerable detection of four classes of organic pollutants (2,4,6-trinitrophenol (TNP), dichloran, aniline, and nicotine) in water at a record-low sensitivity. In addition to solid-, liquid-, and vapor-phase sensing, host-guest-mediated reversible fluoroswitching is validated through repetitive paper-strip monitoring and image-based detection of food sample contamination. Structure-property synergism in the electron transfer route of sensing is justified from DFT calculations that describe the reshuffling of molecular orbital energy levels in an electron-rich network by each organotoxin, besides evidencing framework-analyte supramolecular interactions. The MOF further delineates the pH-responsive luminescence defect repair via site-specific emission modulation, wherein reversibly alternated "encrypted and decrypted" states are utilized as highly reusable anticounterfeiting labels over multiple platforms and conceptualized as artificial molecular switches. Aiming at self-calibrated, advanced security claims, a NOR-OR coupled logic gate is devised based on commensurate fluorescence-cum-real-time synchronous detection of organic and inorganic (HCl and NH) pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c05088DOI Listing

Publication Analysis

Top Keywords

synchronous detection
8
detection
5
high-performance water
4
water harvester
4
harvester framework
4
framework triphasic
4
triphasic synchronous
4
detection assorted
4
assorted organotoxins
4
organotoxins site-memory-reliant
4

Similar Publications

Even if rarely detected, right atrial (RA) masses represent a diagnostic challenge due to their heterogeneous presentation. Para-physiological RA structures, such as a prominent Eustachian valve, Chiari's network, and lipomatous atrial hypertrophy, may easily be misinterpreted as pathological RA masses, including thrombi, myxomas, and vegetations. Each pathological mass should always be correlated with adequate clinical, anamnestic, and laboratory data.

View Article and Find Full Text PDF

A parallelized field-programmable gate array (FPGA) architecture is proposed to realize an ultra-fast, compact, and low-cost dual-channel ultra-wideband (UWB) pulsed-radar system. This approach resolves the main shortcoming of current FPGA-based radars, namely their low processing throughput, which leads to a significant loss of data provided by the radar receiver. The architecture is integrated with an in-house UWB pulsed radar operating at a sampling rate of 20 gigasamples per second (GSa/s).

View Article and Find Full Text PDF

Research Progress in Fiber Bragg Grating-Based Ocean Temperature and Depth Sensors.

Sensors (Basel)

December 2024

College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China.

Fiber Bragg gratings (FBGs) are widely used in stress and temperature sensing due to their small size, light weight, high resistance to high temperatures, corrosion, electromagnetic interference, and low cost. In recent years, various structural enhancements and sensitization to FBGs have been explored to improve the performance of ocean temperature and depth sensors, thereby enhancing the accuracy and detection range of ocean temperature and depth data. This paper reviews advancements in temperature, pressure, and dual-parameter enhancement techniques for FBG-based sensors.

View Article and Find Full Text PDF

Background/objectives: Parkinson's disease (PD) affects more than 6 million people worldwide. Its accurate diagnosis and monitoring are key factors to reduce its economic burden. Typical approaches consider either speech signals or video recordings of the face to automatically model abnormal patterns in PD patients.

View Article and Find Full Text PDF

Dynamic Digital Radiography (DDR) in the Diagnosis of a Diaphragm Dysfunction.

Diagnostics (Basel)

December 2024

Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy.

Dynamic digital radiography (DDR) is a recent imaging technique that allows for real-time visualization of thoracic and pulmonary movement in synchronization with the breathing cycle, providing useful clinical information. A 46-year-old male, a former smoker, was evaluated for unexplained dyspnea and reduced exercise tolerance. His medical history included a SARS-CoV-2 infection in 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!