Robotics in orthopaedic surgery: why, what and how?

Arch Orthop Trauma Surg

BEAMS Department, Bio Electro and Mechanical Systems, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Av. F. Roosevelt, 50 CP165/56, 1050, Bruxelles, Belgium.

Published: December 2021

Introduction: Robotics applied to orthopedics has become an interesting topic both from the surgical point of view and the engineering one. The main goal of those systems is the enhancement of joint arthroplasty surgery, providing the robotic support to precisely and accurately prepare the bone, restore the limb alignment and the physiological kinematics of the joint. Various robotic systems are currently available on the market, each addressing specific kind of surgeries and characterized by a series of specific features that may involve different requirements and/or modus operandi.

Material And Methods: An overview of these devices was performed, addressing the different categories in which robots are subdivided in terms of: operations performed, requirements and level of interaction of the surgeon. The main models currently available on the market were addressed and relative studies in the literature were reported and compared, to highlight the benefits and drawbacks of the different technologies.

Results: The different robotic systems were subdivided in: open/closed platform, image-based/imageless and active/passive/semi-active. Regardless of the typology of robotic system, the main aim is to improve precision and accuracy of the operation. It is to be noted that, regardless of the typology of robotic system, the surgeon is still in charge of the planning and approval of the operation: only the precise and consistent execution of his directives is entrusted to the robot. The positive factors have however to be weighed against the fact that robotic systems involve an important initial investment and most of the times require the surgeons and the staff to learn how to operate them (with a learning curve differing from system to system).

Conclusions: Each surgeon, when considering if and which robotic system to adopt, has to properly evaluate the different benefits and drawbacks involved to find the surgical robot that fits his needs the best.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00402-021-04046-0DOI Listing

Publication Analysis

Top Keywords

robotic systems
12
robotic system
12
currently market
8
benefits drawbacks
8
typology robotic
8
robotic
7
robotics orthopaedic
4
orthopaedic surgery
4
surgery how?
4
how? introduction
4

Similar Publications

Background: Recent advances within the last decade have allowed robotics to become commonplace in the operating room. In the field of neurosurgery, robotics assist surgeons in pedicle screw placement and vertebral fusion procedures. The purpose of this review is to look at currently used spinal robots available on the market and compare their overall accuracy, cost, radiation exposure, general adverse events, and hospital readmission rates.

View Article and Find Full Text PDF

Background: Transabdominal pre-peritoneal inguinal hernia repair using the da Vinci Single-Port robot (SP-TAPP) is currently performed in few centers. We aimed to define the learning curve for SP-TAPP by analyzing operative times.

Methods: The operative times of 122 SP-TAPP performed between 2019 and 2024 were retrospectively analyzed.

View Article and Find Full Text PDF

This paper studies the practical prescribed-time control problem for dual-arm robots handling an object with output constraints. Firstly, by utilizing the property that the sum of internal forces in the grasping space is zero, the system model is obtained and decomposed into the contact force model and free motion model, which are orthogonal to each other. Furthermore, by combining the performance function and constraint function, the original system tracking error is transformed to a new one, whose boundedness can ensure that the original system variable converges to the predetermined range within the specified time.

View Article and Find Full Text PDF

Background: Precise and accurate glenoid preparation is important for the success of shoulder arthroplasty. Despite advancements in preoperative planning software and enabling technologies, most surgeons execute the procedure manually. Patient-specific instrumentation (PSI) facilitates accurate glenoid guide pin placement for cannulated reaming; however, few commercially available systems offer depth of reaming control.

View Article and Find Full Text PDF

Is the Coronal Plane Alignment of the Knee (CPAK) Classification Useful to Plan Individualized Total Knee Arthroplasty Surgery for the Spanish Population? A Critical Analysis of the CPAK Classification.

Rev Esp Cir Ortop Traumatol

January 2025

Knee Surgery Unit, iMove Traumatology, Barcelona, Spain; Knee Surgery Unit, Orthopaedic Surgery Department, Hospital Sant Joan de Déu de Manresa - Fundació Althaia, Universitat de Vic, Manresa, Spain.

Introduction: The CPAK classification aims to categorize knee phenotypes. The original study was based on Australian and Belgian population, but significant variation in CPAK distribution exists between different geographic areas. The primary objective is to evaluate knee phenotypes of osteoarthritic Spanish population based on the CPAK system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!