Water content quantification of raw polysaccharide materials for food processing is generally performed by gravimetric analysis or titrimetric methods, which are time- and energy-consuming, non-eco-friendly and sample destructive. The present study develops and validates a new approach, based on the use of Fourier transform infrared (FTIR) spectroscopy, resulting in a model of the water content of carboxymethyl cellulose (CMC) polysaccharides. Samples of CMC were exposed to different relative humidity conditions. Water content was determined by standard gravimetric methods (OIV-Oeno 404-2010) and compared with the area of FTIR absorption in the range 3675-2980 cm, attributed to the stretching of OH groups. The strong correlation between gravimetric results and FTIR area (R = 0.88) showed no signs of bias across the water content range. A cross-validation technique to predict the water content by band area was assessed obtaining a general equation: y = 2.12 x + 2.80 with a high repetitively and good prediction of the tested models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19440049.2021.1948619 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!