In many low- and middle-income countries, antibiotic-resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here, we characterized the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of extended-spectrum beta-lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanized settings (7), rural ponds with a history of aquaculture-related antibiotic use (11), and rural ponds with no history of antibiotic use (=6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum (on average, 73.8% of assigned reads), while in the water samples, were the predominant phylum (on average, 60.9% of assigned reads). Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. The abundance of antibiotic resistance genes was significantly correlated (=0.73; 8.9 × 10) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanized settings. Low- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries, and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here, we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh. We found that urban surface waters are particularly rich in antibiotic resistance genes, with a higher number of them associated with plasmids, indicating that they are more likely to spread horizontally. The abundance of antibiotic resistance genes was strongly correlated with the abundance of bacteria that originate from the human gut, suggesting that uncontrolled release of human waste is a major driver for the spread of antibiotic resistance in the urban environment. Improvements in sanitation in LMICs may thus be a key intervention to reduce the dissemination of antibiotic-resistant bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407206PMC
http://dx.doi.org/10.1128/mSystems.00137-21DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
40
resistance genes
32
antibiotic-resistant bacteria
16
urban surface
12
surface waters
12
antibiotic
12
abundance antibiotic
12
resistance
10
rural urban
8
waters sediments
8

Similar Publications

Urinary tract infections (UTIs) often prompt empiric outpatient antibiotic prescriptions, risking mismatches. This study evaluates the impact of "UTI Smart-Set" (UTIS), an AI-driven decision-support tool, on prescribing patterns and mismatches in a large outpatient organization. UTIS integrates machine learning forecasts of antibiotic resistance, patient data, and guidelines into a user-friendly order set for UTI management.

View Article and Find Full Text PDF

Antibiotic resistance is influenced by prior antibiotic use, but precise causal estimates are limited. This study uses penicillin allergy as an instrumental variable (IV) to estimate the causal effect of antibiotics on resistance. A retrospective cohort of 36,351 individuals with E.

View Article and Find Full Text PDF

Introduction: The escalating resistance of microorganisms to antimicrobials poses a significant public health threat. Strategies that use biomarkers to guide antimicrobial therapy-most notably Procalcitonin (PCT) and C-reactive protein (CRP)-show promise in safely reducing patient antibiotic exposure. While CRP is less studied, it offers advantages such as lower cost and broader availability compared with PCT.

View Article and Find Full Text PDF

Polymicrobial empyema in a patient with lung adenocarcinomacontaining .

BMJ Case Rep

January 2025

Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, Pennsylvania, USA.

A man in his 60s with advanced COPD and lung adenocarcinoma presented with sepsis and acute hypoxaemic respiratory failure. Imaging revealed bilateral pleural effusions, and he was found to have a polymicrobial empyema which included Despite appropriate treatment, he continued to deteriorate and ultimately died of sepsis. species, typically benign constituents of the oral microbiota, rarely can instigate pleuropulmonary infections, especially in immunocompromised individuals.

View Article and Find Full Text PDF

Emergence of a novel group B streptococcus CC61 clade associated with human infections in southern China.

J Infect

January 2025

National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, PR China. Electronic address:

Objectives: Emerging human pathogens of animal origin have become an increasing public health concern in recent years. The aim of this study was to investigate the transmission of group B streptococcus (GBS) clonal complex (CC) 61 strains in the southern Chinese population and analyze their genetic characteristics.

Methods: Whole-genome sequencing was performed on 693 clinical isolates of GBS collected from southern China between 2016 and 2021, and the prevalence of human CC61 isolates was investigated by genomic epidemiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!