Multiemissive Room-Temperature Phosphorescent Carbon Dots@ZnAlO Composites by Inorganic Defect Triplet-State Energy Transfer.

ACS Appl Mater Interfaces

Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.

Published: July 2021

Room-temperature phosphorescence (RTP) with carbon dots (CDs) can be exploited further if the mechanism of trap-state-mediated triplet-state energy transfer is understood and controlled. Herein, we developed an in situ calcination method for the preparation of a CDs@ZnAlO composite material that exhibits unique UV and visible light-excitable ultra-broad-band RTP. The ZnAlO matrix can protect the triplet emissions of CDs by the confinement effect and spin-orbit coupling. In addition, benefitting from the efficient energy transfer between the inorganic trap state and the triplet state of CDs, the special yellow to red RTP of CDs@ZnAlO composites can be realized. A slow-decaying phosphorescence at 570 nm with a lifetime of 1.05 s and a fast-decaying phosphorescence at 400 nm with a lifetime of 0.41 s were observed with UV irradiation of 290 nm, which originated from the surface and core triplet states of CDs, respectively. Based on the unique RTP performance, anti-counterfeiting and information encryption were successfully realized using the CDs@ZnAlO composites with LED light or UV light.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c07391DOI Listing

Publication Analysis

Top Keywords

energy transfer
12
triplet-state energy
8
cds@znalo composites
8
multiemissive room-temperature
4
room-temperature phosphorescent
4
phosphorescent carbon
4
carbon dots@znalo
4
dots@znalo composites
4
composites inorganic
4
inorganic defect
4

Similar Publications

Background: Immunotherapy of Alzheimer's disease (AD) is a promising approach to reducing the accumulation of beta-amyloid, a critical event in the onset of the disease. Targeting the group II metabotropic glutamate receptors, mGluR2 and mGluR3, could be important in controlling Aβ production, although their respective contribution remains unclear due to the lack of selective tools.

Method: 5xFAD mice were chronically treated by a brain penetrant camelid single domain antibody (VHH or nanobody) that is an activator of mGluR2.

View Article and Find Full Text PDF

Photocurrent Generation by Plant Light-Harvesting Complexes is Enhanced by Lipid-Linked Chromophores in a Self-Assembled Lipid Membrane.

J Phys Chem B

January 2025

Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics.

View Article and Find Full Text PDF

Dimethylacridine based emitters for non-doped organic light-emitting diodes with improved efficiency.

Chem Asian J

January 2025

Fujian Agriculture and Forestry University, College of Materials Engineering, No. 63, Xiyuangong Road, Minhou County, 350108, Fuzhou, CHINA.

Organic light-emitting diodes (OLEDs) has been attracting much extensive interest owing to their advantages of high-definition and flexible displays. Many advances have been focused on boosting the efficiency and stability. Two innovative dimethylacridine-based emitters,1,1,2,2-tetrakis(4- (2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl ethene (AcTPE), and bis(4-(2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl)methanone (Ac2BP) were designed and synthesized, in which TPE-baesed AcTPE presents AIE properties, and with the phenyl as spacer between the DMAC and carbony, aryl-ketone-based Ac2BP doesn't show AIE properties due to the absence of restriction of intramolecular rotations.

View Article and Find Full Text PDF

The Effects of Manual Therapy with TECAR Therapy, on Pain, Disability and Range of Motion in Women with Non-specific Chronic Neck Pain.

Med J Islam Repub Iran

September 2024

Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.

Background: This study was designed to compare the effectiveness of manual therapy alone and a combination of it and TECAR (Transfer Energy Capacitive and Resistive) therapies on the conditions of pain, disability, and neck range of motion (ROM) in patients with non-specific chronic neck pain (NCNP).

Methods: In this Randomized controlled study, 30 women with non-specific chronic neck pain were randomly divided into two groups: Manual therapy along with TECAR therapy (intervention group) and single manual therapy (control group). The participants were homogenized in terms of age, height, and weight.

View Article and Find Full Text PDF

In processes such as electrodialysis, the applied electrical potential is constrained by concentration polarization at the membrane/solution interface. This polarization, which intensifies at higher current densities, impedes ion transport efficiency and may lead to problems such as salt precipitation, membrane degradation, and increased energy consumption. Therefore, understanding concentration polarization is essential for enhancing membrane performance, improving efficiency, and reducing operational costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!