Biphasic calcium phosphate (BCP) granules are osteoconductive biomaterials used in clinics to favor bone reconstruction. Yet, poor cohesivity, injectability and mechanical properties restrain their use as bone fillers. In this study, we incorporated BCP granules into in situ forming silanized hyaluronic acid (Si-HA) and hydroxypropylmethylcellulose (Si-HPMC) hydrogels. Hydrogel composites were shown to be easily injectable (F < 30 N), with fast hardening properties (<5 min), and similar mechanical properties (E∼ 60 kPa). In vivo, both hydrogels were well tolerated by the host, but showed different biodegradability with Si-HA gels being partially degraded after 21d, while Si-HPMC gels remained stable. Both composites were easily injected into critical size rabbit defects and remained cohesive. After 4 weeks, Si-HPMC/BCP led to poor bone healing due to a lack of degradation. Conversely, Si-HA/BCP composites were fully degraded and beneficially influenced bone regeneration by increasing the space available for bone ingrowth, and by accelerating BCP granules turnover. Our study demonstrates that the degradation rate is key to control bone regeneration and that Si-HA/BCP composites are promising biomaterials to regenerate bone defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1bm00403d | DOI Listing |
Drug Deliv Transl Res
January 2025
Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
Inflammation, a crucial defense mechanism, must be rigorously regulated to prevent the onset of chronic inflammation and subsequent tissue damage. Specialized pro resolving mediators (SPMs) such as lipoxin A4 (LXA4) have demonstrated their ability to facilitate the resolution of inflammation by orchestrating a transition of M1 pro-inflammatory macrophages towards an anti-inflammatory M2 phenotype. However, the hydrophobic and chemically labile nature of LXA4 necessitates the development of a delivery system capable of preserving its integrity for clinical applications.
View Article and Find Full Text PDFACS Biomater Sci Eng
August 2023
Nanoscience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, Florida 32826, United States.
Microcantilever platforms are functional models for studying skeletal muscle force dynamics in vitro. However, the contractile force generated by the myotubes can cause them to detach from the cantilevers, especially during long-term experiments, thus impeding the chronic investigations of skeletal muscles for drug efficacy and toxicity. To improve the integration of myotubes with microcantilevers, we drew inspiration from the elastomeric proteins, elastin and resilin, that are present in the animal and insect worlds, respectively.
View Article and Find Full Text PDFCarbohydr Polym
September 2023
School of Pharmacy, Nantong University, Nantong 226001, China. Electronic address:
As the number of applications has increased, so has the demand for contact lenses comfort. Adding polysaccharides to lenses is a popular way to enhance comfort for wearers. However, this may also compromise some lens properties.
View Article and Find Full Text PDFCarbohydr Polym
August 2023
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China. Electronic address:
Breast cancer is one of the most threatening cancers that poses a great risk to women's health. The anti-tumor drug doxorubicin (DOX) is one of commonly used drugs in the treatment of breast cancer. However, the cytotoxicity of DOX has always been an urgent challenge to be solved.
View Article and Find Full Text PDFBiomater Sci
August 2021
Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and CHU Nantes, PHU4 OTONN, Nantes F-44093, France.
Biphasic calcium phosphate (BCP) granules are osteoconductive biomaterials used in clinics to favor bone reconstruction. Yet, poor cohesivity, injectability and mechanical properties restrain their use as bone fillers. In this study, we incorporated BCP granules into in situ forming silanized hyaluronic acid (Si-HA) and hydroxypropylmethylcellulose (Si-HPMC) hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!