Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoporous silica membranes exhibit excellent H/CO separation properties for sustainable H production and CO capture but are prepared via complicated thermal processes above 400 °C, which prevent their scalable production at a low cost. Here, we demonstrate the rapid fabrication (within 2 min) of ultrathin silica-like membranes (∼3 nm) via an oxygen plasma treatment of polydimethylsiloxane-based thin-film composite membranes at 20 °C. The resulting organosilica membranes unexpectedly exhibit H permeance of 280-930 GPU (1 GPU = 3.347 × 10 mol m s Pa) and H/CO selectivity of 93-32 at 200 °C, far surpassing state-of-the-art membranes and Robeson's upper bound for H/CO separation. When challenged with a 3 d simulated syngas test containing water vapor at 200 °C and a 340 d stability test, the membrane shows durable separation performance and excellent hydrothermal stability. The robust H/CO separation properties coupled with excellent scalability demonstrate the great potential of these organosilica membranes for economic H production with minimal carbon emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c03492 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!