Evolutionary pressures and codon bias in low complexity regions of plasmodia.

Genetica

Department of Physics, Sapienza, University of Rome, P.le A. Moro 5, 00185, Roma, Italy.

Published: August 2021

The biological meaning of low complexity regions in the proteins of Plasmodium species is a topic of discussion in evolutionary biology. There is a debate between selectionists and neutralists, who either attribute or do not attribute an effect of low-complexity regions on the fitness of these parasites, respectively. In this work, we comparatively study 22 Plasmodium species to understand whether their low complexity regions undergo a neutral or, rather, a selective and species-dependent evolution. The focus is on the connection between the codon repertoire of the genetic coding sequences and the occurrence of low complexity regions in the corresponding proteins. The first part of the work concerns the correlation between the length of plasmodial proteins and their propensity at embedding low complexity regions. Relative synonymous codon usage, entropy, and other indicators reveal that the incidence of low complexity regions and their codon bias is species-specific and subject to selective evolutionary pressure. We also observed that protein length, a relaxed selective pressure, and a broad repertoire of codons in proteins, are strongly correlated with the occurrence of low complexity regions. Overall, it seems plausible that the codon bias of low-complexity regions contributes to functional innovation and codon bias enhancement of proteins on which Plasmodium species rest as successful evolutionary parasites.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10709-021-00126-6DOI Listing

Publication Analysis

Top Keywords

low complexity
28
complexity regions
28
codon bias
16
plasmodium species
12
regions
9
proteins plasmodium
8
low-complexity regions
8
occurrence low
8
low
7
complexity
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!