Cell type-specific roles of PAR1 in Coxsackievirus B3 infection.

Sci Rep

Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA.

Published: July 2021

Protease-activated receptor 1 (PAR1) is widely expressed in humans and mice, and is activated by a variety of proteases, including thrombin. Recently, we showed that PAR1 contributes to the innate immune response to viral infection. Mice with a global deficiency of PAR1 expressed lower levels of CXCL10 and had increased Coxsackievirus B3 (CVB3)-induced myocarditis compared with control mice. In this study, we determined the effect of cell type-specific deletion of PAR1 in cardiac myocytes (CMs) and cardiac fibroblasts (CFs) on CVB3-induced myocarditis. Mice lacking PAR1 in either CMs or CFs exhibited increased CVB3 genomes, inflammatory infiltrates, macrophages and inflammatory mediators in the heart and increased CVB3-induced myocarditis compared with wild-type controls. Interestingly, PAR1 enhanced poly I:C induction of CXCL10 in rat CFs but not in rat neonatal CMs. Importantly, activation of PAR1 reduced CVB3 replication in murine embryonic fibroblasts and murine embryonic cardiac myocytes. In addition, we showed that PAR1 reduced autophagy in murine embryonic fibroblasts and rat H9c2 cells, which may explain how PAR1 reduces CVB3 replication. These data suggest that PAR1 on CFs protects against CVB3-induced myocarditis by enhancing the anti-viral response whereas PAR1 on both CMs and fibroblasts inhibits viral replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275627PMC
http://dx.doi.org/10.1038/s41598-021-93759-8DOI Listing

Publication Analysis

Top Keywords

cvb3-induced myocarditis
16
par1
12
murine embryonic
12
cell type-specific
8
par1 expressed
8
myocarditis compared
8
cardiac myocytes
8
par1 cms
8
par1 reduced
8
cvb3 replication
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!