While life history, physiology and molecular phylogeny in plants have been widely studied, understanding how physiology changes with the evolution of life history change remains largely unknown. In two closely related understory Strobilanthes plants, the molecular phylogeny has previously shown that the monocarpic 6-year masting S. flexicaulis have evolved from a polycarpic perennial, represented by the basal clade S. tashiroi. The polycarpic S. tashiroi exhibited seasonal thermal acclimation with increased leaf respiratory and photosynthetic metabolism in winter, whereas the monocarpic S. flexicaulis showed no thermal acclimation. The monocarpic S. flexicaulis required rapid height growth after germination under high intraspecific competition, and the respiration and N allocation were biased toward nonphotosynthetic tissues. By contrast, in the long-lived polycarpic S. tashiroi, these allocations were biased toward photosynthetic tissues. The life-history differences between the monocarpic S. flexicaulis and the polycarpic S. tashiroi are represented by the "height growth" and "assimilation" paradigms, respectively, which are controlled by different patterns of respiration and nitrogen regulation in leaves. The obtained data indicate that the monocarpic S. flexicaulis with the evolutionary loss of thermal acclimation may exhibit increased vulnerability to global warming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275617PMC
http://dx.doi.org/10.1038/s41598-021-93833-1DOI Listing

Publication Analysis

Top Keywords

thermal acclimation
16
monocarpic flexicaulis
16
polycarpic tashiroi
12
evolutionary loss
8
loss thermal
8
life history
8
molecular phylogeny
8
monocarpic
6
flexicaulis
6
thermal
4

Similar Publications

Assessing how at-risk species respond to co-occurring stressors is critical for predicting climate change vulnerability. In this study, we characterized how young-of-the-year White Sturgeon () cope with warming and low oxygen (hypoxia) and investigated whether prior exposure to one stressor may improve the tolerance to a subsequent stressor through "cross-tolerance". Fish were acclimated to five temperatures within their natural range (14-22°C) for one month prior to assessment of thermal tolerance (critical thermal maxima, CTmax) and hypoxia tolerance (incipient lethal oxygen saturation, ILOS; tested at 20°C).

View Article and Find Full Text PDF

From a conservation perspective, it is important to identify when sub-lethal temperatures begin to adversely impact an organism. However, it is unclear whether, during acute exposures, sub-lethal cellular thresholds occur at similar temperatures to other physiological or behavioural changes, or at temperatures associated with common physiological endpoints measured in fishes to estimate thermal tolerance. To test this, we estimated temperature preference (15.

View Article and Find Full Text PDF

Nitrogen source type modulates heat stress response in coral symbiont ().

Appl Environ Microbiol

January 2025

Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.

Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).

View Article and Find Full Text PDF

Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, promoting expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in , a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population.

View Article and Find Full Text PDF

Thermal Behavior of Tropical Sea Cucumber of : Preliminary Issues.

Animals (Basel)

December 2024

Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, B.C., Mexico.

We investigated the growth, preferences, and thermal resistance of the sea cucumber to understand its thermal biology. Sixty individuals were kept in tanks at two temperatures (23 °C and 26 °C) for 30 days to determine their favorable maintenance temperature. Their survival rates and specific growth rates were measured to establish their ideal conditioning temperature in the laboratory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!