Magnetic skyrmions are nanoscale spin textures touted as next-generation computing elements. When subjected to lateral currents, skyrmions move at considerable speeds. Their topological charge results in an additional transverse deflection known as the skyrmion Hall effect (SkHE). While promising, their dynamic phenomenology with current, skyrmion size, geometric effects and disorder remain to be established. Here we report on the ensemble dynamics of individual skyrmions forming dense arrays in Pt/Co/MgO wires by examining over 20,000 instances of motion across currents and fields. The skyrmion speed reaches 24 m/s in the plastic flow regime and is surprisingly robust to positional and size variations. Meanwhile, the SkHE saturates at ∼22, is substantially reshaped by the wire edge, and crucially increases weakly with skyrmion size. Particle model simulations suggest that the SkHE size dependence - contrary to analytical predictions - arises from the interplay of intrinsic and pinning-driven effects. These results establish a robust framework to harness SkHE and achieve high-throughput skyrmion motion in wire devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275747 | PMC |
http://dx.doi.org/10.1038/s41467-021-24114-8 | DOI Listing |
J Phys Condens Matter
January 2025
Condensed Matter Physics, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700 064, Kolkata, West Bengal, 700064, INDIA.
β-Mn-type chiral cubic CoxZnyMnz (x + y + z = 20) alloys present a intriguing platform for exploring topological magnetic orderings with promising spintronic potential. This study examines the magnetotransport properties of Co6.5Ru1.
View Article and Find Full Text PDFPNAS Nexus
December 2024
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
Hydrodynamics is known to emerge in electron flow when the electron-electron interaction dominates over the other momentum-nonconserving scatterings. The hydrodynamic equation that describes the electric current includes viscosity, extending beyond the Ohmic flow. The laminar flow of such a viscous electron fluid in a sample with finite width is referred to as the Poiseuille flow, where the flow velocity is maximum at the center and decreases towards the edges of the sample.
View Article and Find Full Text PDFMater Horiz
December 2024
Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China.
The Topological Hall effect (THE) is a fascinating physical phenomenon related to topological spin textures, serving as a powerful electrical probe for detecting and understanding these unconventional magnetic orders and skyrmions. Recently, the THE has been observed in strontium ruthenate (SrRuO, SRO) thin films and its heterostructures, which originates from the disruption of interfacial inversion symmetry and Dzyaloshinskii-Moriya interaction (DMI). Here, we demonstrate a practically pure proton doping effect for controlling the DMI and THE in the SRO epitaxial films using the Pt electrode-assisted hydrogenation method.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA.
We study the Kondo lattice model of multipolar magnetic moments interacting with conduction electrons on a triangular lattice. Bond-dependent electron hoppings induce a compasslike anisotropy in the effective Ruderman-Kittel-Kasuya-Yosida interaction between multipolar moments. This unique anisotropy stabilizes multipolar skyrmion crystals at zero magnetic field.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.
It is widely believed that the skyrmion Hall effect is absent in antiferromagnets because of the vanishing topological charge. However, the Aharonov-Casher theory indicates the possibility of topological effects for neutral particles. In this Letter, we predict the skyrmion Hall effect in emerging altermagnets with zero net magnetization and zero skyrmion charge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!