The C-terminal binding proteins (CtBPs), CtBP1 and CtBP2, are transcriptional co-repressor that interacts with multiple transcriptional factors to modulate the stability of chromatin. CtBP proteins were identified with overexpression in the high-grade serous ovarian carcinoma (HGSOC). However, little is known about CtBP proteins' regulatory roles in genomic stability and DNA repair in HGSOC. In this study, we combined whole-transcriptome analysis with multiple research methods to investigate the role of CtBP1/2 in genomic stability. Several key functional pathways were significantly enriched through whole transcription profile analysis of CtBP1/2 knockdown SKOV3 cells, including DNA damage repair, apoptosis, and cell cycle. CtBP1/2 knockdown induced cancer cell apoptosis, increased genetic instability, and enhanced the sensitivity to DNA damage agents, such as γ-irradiation and chemotherapy drug (Carboplatin and etoposide). The results of DNA fiber assay revealed that CtBP1/2 contribute differentially to the integrity of DNA replication track and stability of DNA replication recovery. CtBP1 protects the integrity of stalled forks under metabolic stress condition during prolonged periods of replication, whereas CtBP2 acts a dominant role in stability of DNA replication recovery. Furthermore, CtBP1/2 knockdown shifted the DSBs repair pathway from homologous recombination (HR) to non-homologous end joining (NHEJ) and activated DNA-PK in SKOV3 cells. Interesting, blast through TCGA tumor cases, patients with CtBP2 genetic alternation had a significantly longer overall survival time than unaltered patients. Together, these results revealed that CtBP1/2 play a different regulatory role in genomic stability and DSBs repair pathway bias in serous ovarian cancer cells. It is possible to generate novel potential targeted therapy strategy and translational application for serous ovarian carcinoma patients with a predictable better clinical outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275597 | PMC |
http://dx.doi.org/10.1038/s41389-021-00344-9 | DOI Listing |
Curr Cancer Drug Targets
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
Background: The advent of next generation sequencing technologies has enabled a surge in the number of whole genome sequences in public databases, and our understanding of the composition and evolution of bacterial genomes. Besides model organisms and pathogens, some attention has been dedicated to industrial bacteria, notably members of the Lactobacillaceae family that are commonly studied and formulated as probiotic bacteria. Of particular interest is Lactobacillus acidophilus NCFM, an extensively studied strain that has been widely commercialized for decades and is being used for the delivery of vaccines and therapeutics.
View Article and Find Full Text PDFNat Genet
January 2025
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes.
View Article and Find Full Text PDFNat Commun
January 2025
Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
Human cancer cell lines are the mainstay of cancer research. Recent reports showed that highly mutated adult carcinoma cell lines (mainly HeLa and MCF-7) present striking diversity across laboratories and that long-term continuous culturing results in genomic/transcriptomic heterogeneity with strong phenotypical implications. Here, we hypothesize that oligomutated pediatric sarcoma cell lines mainly driven by a fusion transcription factor, such as Ewing sarcoma (EwS), are genetically and phenotypically more stable than the previously investigated adult carcinoma cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!