Effective multi-sensor data fusion for chatter detection in milling process.

ISA Trans

Industry 4.0 Implementation Center, Center of Cyber-physical System Innovation, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan; Department of Electrical Engineering, Faculty of Engineering (Shoubra), Benha University, 108 Shoubra St., B. O. Box 11241, Cairo, Egypt.

Published: June 2022

This paper introduces a newly developed multi-sensor data fusion for the milling chatter detection with a cheap and easy implementation compared with traditional chatter detection schemes. The proposed multi-sensor data fusion utilizes microphone and accelerometer sensors to measure the occurrence of chatter during the milling process. It has the advantageous over the dynamometer in terms of easy installation and low cost. In this paper, the wavelet packet decomposition is adopted to analyze both measured sound and vibration signals. However, the parameters of the wavelet packet decomposition require fine-tuning to provide good performance. Hence the result of the developed scheme has been improved by optimizing the selection of the wavelet packet decomposition parameters including the mother wavelet and the decomposition level based on the kurtosis and crest factors. Furthermore, the important chatter features are selected using the recursive feature elimination method, and its performance is compared with metaheuristic algorithms. Finally, several machine learning techniques have been adopted to classify the cutting stabilities based on the selected features. The results confirm that the proposed multi-sensor data fusion scheme can provide an effective chatter detection under industrial conditions, and it has higher accuracy than the traditional schemes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2021.07.005DOI Listing

Publication Analysis

Top Keywords

multi-sensor data
16
data fusion
16
chatter detection
16
wavelet packet
12
packet decomposition
12
milling process
8
proposed multi-sensor
8
chatter
6
effective multi-sensor
4
data
4

Similar Publications

The main features of long-distance migration are derived from landbirds breeding in the Northern Hemisphere. Little is known about migration within the tropics, presumably because tropical species typically move opportunistically and over shorter distances. However, such generalizations are weakened by a lack of solid data on spatial, temporal and behavioural patterns of intra-tropical migrations.

View Article and Find Full Text PDF

Condition monitoring and fault classification in engineering systems is a critical challenge within the scope of Prognostics and Health Management (PHM). The fault diagnosis of complex nonlinear systems, such as hydraulic systems, has become increasingly important due to advancements in big data analytics, machine learning (ML), Industry 4.0, and Internet of Things (IoT) applications.

View Article and Find Full Text PDF

Background: To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in diagnosing neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending to scale-up its application, circumvent costs in the training of human assessors and further standardize classification of spontaneous motor patterns. Available deep learning tools, all of which are based on single sensor modalities, are however still considerably inferior to that of well-trained human assessors.

View Article and Find Full Text PDF

This paper proposes an improved remaining useful life (RUL) prediction method for stochastic degradation devices monitored by multi-source sensors under data-model interactive framework. Firstly, the interrelationships among sensors are established using k-nearest neighbor (KNN), and the composite health index (CHI) is constructed by aggregating the multi-source sensor information through the graph convolutional network (GCN). Secondly, a stochastic degradation model with triple uncertainty at any initial degradation level is established to improve the matching degree between the stochastic degradation model and the actual degradation process.

View Article and Find Full Text PDF

Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!