A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bayesian information sharing enhances detection of regulatory associations in rare cell types. | LitMetric

Motivation: Recent advances in single-cell RNA-sequencing (scRNA-seq) technologies promise to enable the study of gene regulatory associations at unprecedented resolution in diverse cellular contexts. However, identifying unique regulatory associations observed only in specific cell types or conditions remains a key challenge; this is particularly so for rare transcriptional states whose sample sizes are too small for existing gene regulatory network inference methods to be effective.

Results: We present ShareNet, a Bayesian framework for boosting the accuracy of cell type-specific gene regulatory networks by propagating information across related cell types via an information sharing structure that is adaptively optimized for a given single-cell dataset. The techniques we introduce can be used with a range of general network inference algorithms to enhance the output for each cell type. We demonstrate the enhanced accuracy of our approach on three benchmark scRNA-seq datasets. We find that our inferred cell type-specific networks also uncover key changes in gene associations that underpin the complex rewiring of regulatory networks across cell types, tissues and dynamic biological processes. Our work presents a path toward extracting deeper insights about cell type-specific gene regulation in the rapidly growing compendium of scRNA-seq datasets.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Availability And Implementation: The code for ShareNet is available at http://sharenet.csail.mit.edu and https://github.com/alexw16/sharenet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275330PMC
http://dx.doi.org/10.1093/bioinformatics/btab269DOI Listing

Publication Analysis

Top Keywords

cell types
16
regulatory associations
12
gene regulatory
12
cell type-specific
12
cell
8
network inference
8
type-specific gene
8
regulatory networks
8
regulatory
6
gene
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!