Motivation: The process of placing new drugs into the market is time-consuming, expensive and complex. The application of computational methods for designing molecules with bespoke properties can contribute to saving resources throughout this process. However, the fundamental properties to be optimized are often not considered or conflicting with each other. In this work, we propose a novel approach to consider both the biological property and the bioavailability of compounds through a deep reinforcement learning framework for the targeted generation of compounds. We aim to obtain a promising set of selective compounds for the adenosine A2A receptor and, simultaneously, that have the necessary properties in terms of solubility and permeability across the blood-brain barrier to reach the site of action. The cornerstone of the framework is based on a recurrent neural network architecture, the Generator. It seeks to learn the building rules of valid molecules to sample new compounds further. Also, two Predictors are trained to estimate the properties of interest of the new molecules. Finally, the fine-tuning of the Generator was performed with reinforcement learning, integrated with multi-objective optimization and exploratory techniques to ensure that the Generator is adequately biased.

Results: The biased Generator can generate an interesting set of molecules, with approximately 85% having the two fundamental properties biased as desired. Thus, this approach has transformed a general molecule generator into a model focused on optimizing specific objectives. Furthermore, the molecules' synthesizability and drug-likeness demonstrate the potential applicability of the de novo drug design in medicinal chemistry.

Availability And Implementation: All code is publicly available in the https://github.com/larngroup/De-Novo-Drug-Design.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336597PMC
http://dx.doi.org/10.1093/bioinformatics/btab301DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
12
blood-brain barrier
8
deep reinforcement
8
novo drug
8
drug design
8
fundamental properties
8
properties
5
generator
5
optimizing blood-brain
4
barrier permeation
4

Similar Publications

Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.

View Article and Find Full Text PDF

Accurate interoceptive processing in decision-making is essential to maintain homeostasis and overall health. Disruptions in this process have been associated with various psychiatric conditions, including depression. Recent studies have focused on nutrient homeostatic dysregulation in depression for effective subtype classification and treatment.

View Article and Find Full Text PDF

Background: Molecular interactions between proteins and their ligands are important for drug design. A pharmacophore consists of favorable molecular interactions in a protein binding site and can be utilized for virtual screening. Pharmacophores are easiest to identify from co-crystal structures of a bound protein-ligand complex.

View Article and Find Full Text PDF

Background: This study was undertaken to understand the role of the Health Care Assistants and how they negotiate roles and responsibilities with Registered Nurses in adult acute hospitals.

Methods: The qualitative approach of focused ethnography used non-participant observation and interviews with staff from four acute wards. Field notes and interview data, analysed using NVIVO10, moved data from description through explanation, interpretation and identification of themes.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) causes intrusive symptoms and avoidance behaviours due to dysregulation in various brain regions, including the hippocampus. Deep brain stimulation (DBS) shows promise for refractory PTSD cases. In rodents, DBS improves fear extinction and reduces anxiety-like behaviours, but its effects on active-avoidance extinction remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!