Bromine (Br) and iodine (I) in source water can form highly toxic brominated or iodinated disinfection byproducts in treatment plants. For the first time, the occurrence of Br and I speciation and their proportion, transformation in the drinking water supply system along the Changjiang River were investigated. 96 water samples were collected from eight drinking water treatment plants under conditions of low, normal, and flood water regimes. Total Br (TBr) and total I (TI) concentrations were quantified by inductively coupled plasma mass spectrometry (ICPMS) and inorganic Br/I forms (bromide, bromate, iodide, and iodate) were determined by high-performance liquid chromatography coupled with ICPMS. Concentrations of organic Br/I were calculated as the difference between total Br/I and inorganic Br/I. Water regimes had different effect on Br and I species, and there were different rules in untreated and treated water samples. Apparent increase of TBr and TI concentrations after water treatment were observed, which indicated the possibility of Br/I introduction by chlorine-containing disinfectant. The occurrence of TBr, TI, bromide, and total organic I in the river were investigated to increase with the direction of flow. In addition, TBr and TI concentrations correlated with the concentrations of artificial sweeteners (e.g., acesulfame and sucralose, a kind of wastewater indicator), suggesting the influence of domestic sewage on Br and I in the river. In untreated water, bromide was the main Br species, and after treatment more than 50% was transformed into organic Br. Iodoorganics were the majority of I species in raw water and were partly transformed into iodate after treatment. Overall, the Br/I species have accumulation potential in the Changjiang River and organic forms occupy high proportion in treated water samples, which should be paid more attention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2021.117401 | DOI Listing |
Phys Chem Chem Phys
January 2025
Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil.
Aspergillus and Candida are ubiquitous fungi included in the group of high priority in the World Health Organization list of fungal pathogens. They are found in various ecosystems and the environmental role in increasing the resistance to antifungals has been shown. Thus, we aimed to determine the occurrence of Aspergillus spp.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, University of California, Berkeley, CA 94720.
Combining Deep-UV second harmonic generation spectroscopy with molecular simulations, we confirm and quantify the specific adsorption of guanidinium cations to the air-water interface. Using a Langmuir analysis of measurements at multiple concentrations, we extract the Gibbs free energy of adsorption, finding it larger than typical thermal energies. Molecular simulations clarify the role of polarizability in tuning the thermodynamics of adsorption, and establish the preferential parallel alignment of guanidinium at the air-water interface.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland.
Chemotaxis enables marine bacteria to increase encounters with phytoplankton cells by reducing their search times, provided that bacteria detect noisy chemical gradients around phytoplankton. Gradient detection depends on bacterial phenotypes and phytoplankton size: large phytoplankton produce spatially extended but shallow gradients, whereas small phytoplankton produce steeper but spatially more confined gradients. To date, it has remained unclear how phytoplankton size and bacterial swimming speed affect bacteria's gradient detection ability and search times for phytoplankton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!