Seventy-seven PM2.5 samples were collected at an urban site (Chongqing University Campus A) in October 2015 (autumn), December 2015 (winter), March 2016 (spring), and August 2016 (summer). These samples were analysed for organic carbon (OC), elemental carbon (EC), and their associated char, soot, 16 PAHs, and 28 n-alkanes to trace sources, and atmospheric transport pathways. The annual average of OC, EC, char, soot, ΣPAHs, and Σn-alkanes were 20.75 μg/m, 6.18 μg/m, 5.43 μg/m, 0.75 μg/m, 38.29 ng/m, and 328.69 ng/m, respectively. OC, ΣPAHs, and Σn-alkane concentrations were highest in winter and lowest in summer. EC, char, and soot concentrations were highest in autumn and lowest in winter. Source apportionment via positive matrix factorization (PMF) indicated that coal/biomass combustion-natural gas emissions (23.8%) and motor vehicle exhaust (20.2%) were the two major sources, followed by diesel and petroleum residue (21.1%), natural biogenic sources (17.7%), and evaporative/petrogenic sources (17.2%). The highest source contributor in autumn and winter was evaporative/petrogenic sources (30.6%) and natural biogenic sources (34.5%), respectively, whereas diesel engine emission contributed the most in spring and summer (32.1% and 38.0%, respectively). Potential source contribution function (PSCF) analysis identified southeastern Sichuan and northwestern Chongqing as the major potential sources of these pollutants. These datasets provide critical information for policymakers to establish abatement strategies for the reduction of carbonaceous pollutant emissions and improve air quality in Chongqing and other similar urban centres across China.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131462DOI Listing

Publication Analysis

Top Keywords

char soot
12
source apportionment
8
concentrations highest
8
natural biogenic
8
biogenic sources
8
evaporative/petrogenic sources
8
sources
7
carbonaceous aerosols
4
aerosols urban
4
chongqing
4

Similar Publications

Component analysis and source identification of atmospheric aerosols at the neighborhood scale in a coastal industrial city in China.

Environ Pollut

December 2024

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6∼202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%∼60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).

View Article and Find Full Text PDF

Absence of a Causal Link between Elemental Carbon Exposure and Short-Term Respiratory Toxicity in Human-Derived Organoids and Cellular Models.

Environ Sci Technol

December 2024

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

Black carbon or elemental carbon (EC) in the atmosphere plays an ambiguous role in acute respiratory toxic effects. Here, we evaluate the contribution of EC to the short-term toxicity (including cytotoxicity and oxidative stress potency) of fine particulate matter (PM) on the human respiratory tract using in vitro airway organoids and cell lines. The toxic potency of EC per unit mass, including char and soot, is more than 2 orders of magnitude lower than that of polycyclic aromatic hydrocarbons (PAHs), which are coemitted from incomplete combustion.

View Article and Find Full Text PDF

Residential wood combustion (RWC) remains a significant global source of particulate matter (PM) emissions with adverse impacts on regional air quality, climate, and human health. The lung-deposited surface area (LDSA) and equivalent black carbon (eBC) concentrations have emerged as important metrics to assess particulate pollution. In this study we estimated combustion phase-dependent emission factors of LDSA for alveolar, tracheobronchial, and head-airway regions of human lungs and explored the relationships between eBC and LDSA in fresh and photochemically aged RWC emissions.

View Article and Find Full Text PDF

Black carbon in urban soils: land use and climate drive variation at the surface.

Carbon Balance Manag

March 2024

Department of Geography and the Environment, University of North Texas, 1155 Union Circle #305279, Denton, TX, 76203, USA.

Background: Black carbon (BC) encompasses a range of carbonaceous materials--including soot, char, and charcoal--derived from the incomplete combustion of fossil fuels and biomass. Urban soils can become enriched in BC due to proximity to these combustion sources. We conducted a literature review of BC in urban soils globally and found 26 studies reporting BC and total organic carbon (TOC) content collected to a maximum of 578 cm depth in urban soils across 35 cities and 10 countries.

View Article and Find Full Text PDF

The current study presents for the first time how recovered carbon black (rCB) obtained directly from the industrial-scale end-of-life tires (ELTs) pyrolysis sector is applied as a precursor for activated carbons (ACs) with application in CO capture. The rCB shows better physical characteristics, including density and carbon structure, as well as chemical properties, such as a consistent composition and low impurity concentration, in comparison to the pyrolytic char. Potassium hydroxide and air in combination with heat treatment (500-900 °C) were applied as agents for the conventional chemical and physical activation of the material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!