Authentication, detection and quantification of ingredients, and adulterants in food, meat, and meat products are of high importance these days. The conventional techniques for the detection of meat species based on lipid, protein and DNA biomarkers are facing challenges due to the poor selectivity, sensitivity and unsuitability for processed food products or complex food matrices. On the other hand, DNA based molecular techniques and nanoparticle based DNA biosensing strategies are gathering huge attention from the scientific communities, researchers and are considered as one of the best alternatives to the conventional strategies. Though nucleic acid based molecular techniques such as PCR and DNA sequencing are getting greater successes in species detection, they are still facing problems from its point-of-care applications. In this context, nanoparticle based DNA biosensors have gathered successes in some extent but not to a satisfactory stage to mark with. In recent years, many articles have been published in the area of progressive nucleic acid-based technologies, however there are very few review articles on DNA nanobiosensors in food science and technology. In this review, we present the fundamentals of DNA based molecular techniques such as PCR, DNA sequencing and their applications in food science. Moreover, the in-depth discussions of different DNA biosensing strategies or more specifically electrochemical and optical DNA nanobiosensors are presented. In addition, the significance of DNA nanobiosensors over other advanced detection technologies is discussed, focusing on the deficiencies, advantages as well as current challenges to ameliorate with the direction for future development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcp.2021.101758 | DOI Listing |
Comput Biol Chem
January 2025
Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia. Electronic address:
Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..
View Article and Find Full Text PDFPlant Dis
January 2025
50 Yonsei-ro, Seodaemun-guSeoul, Korea (the Republic of), 03722;
Fire blight, a devastating bacterial disease affecting rosaceous plants such as apples and pears, is caused by . The disease, known for its rapid spread and destructive potential, can lead to severe symptoms and often result in the death of infected plants. In Korea, the observation of was first recorded in 2015, and subsequent dissemination has been noted across the peninsula.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Biomedical Engineering , University of Wisconsin-Milwaukee College of Engineering and Applied Science, 3203 N Downer Ave, Milwaukee, Milwaukee, Wisconsin, 53211-3029, UNITED STATES.
Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.
View Article and Find Full Text PDFJMIR Public Health Surveill
January 2025
Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
Background: Numerous studies have assessed the risk of SARS-CoV-2 exposure and infection among health care workers during the pandemic. However, far fewer studies have investigated the impact of SARS-CoV-2 on essential workers in other sectors. Moreover, guidance for maintaining a safely operating workplace in sectors outside of health care remains limited.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China.
This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!