Pre-loading large volume oral electrolytes: tracing fluid and ion fluxes in horses during rest, exercise and recovery.

J Physiol

Research and Development, The Nutraceutical Alliance Inc., Burlington, Ontario, Canada.

Published: August 2021

AI Article Synopsis

  • Exercise causes significant shifts of fluids between the extracellular and intracellular spaces and leads to losses in water and electrolytes through sweating.
  • Supplementing with a balanced hypotonic electrolyte solution before exercise can help maintain extracellular fluid levels, improve exercise performance, and increase the duration of exercise even with ongoing sweating.
  • The study used radioactive sodium and potassium to track how quickly these electrolytes appear in skeletal muscle and confirmed that supplementing with electrolytes prior to exercise reduces fluid loss and enhances overall fluid and ion balance during prolonged physical activity.

Article Abstract

Key Points: Exercise results in rapid and large extracellular to intracellular fluid shifts, as well as significant sweating losses of water and ions. It is unknown whether ions within oral electrolyte supplements are taken up by muscle (and other soft tissues) and whether oral supplementation can effectively offset sweating losses. Pre-loading with 8 L of a balanced hypotonic electrolyte supplement attenuated extracellular fluid losses, increased exercise duration and increased sweating fluid and ion losses during submaximal exercise. Supplemented electrolytes appear in skeletal muscle within 1 h after administration. Electrolyte supplementation increased exercise performance, improved maintenance of extracellular fluid volumes, and attenuated body fluid losses while maintaining sweating rates.

Abstract: This study used radioactive sodium ( Na) and potassium ( K) in a balanced, hypotonic electrolyte supplement to trace their appearance in skeletal muscle, and also quantified extracellular and whole-body fluid and ion changes during electrolyte supplementation, exercise and recovery. In a randomized crossover design, 1 h after administration of 1 to 3 L of water or electrolyte supplement with Na, horses were exercised at 35% VO to voluntary fatigue or, after administration of 8 L of water or electrolyte supplement with K were exercised at 50% peak VO for 45 min (n = 4 in each trial). Pre-exercise electrolyte supplementation was associated with decreased loss of fluid and electrolytes from the extracellular fluid compartments during exercise and recovery compared with water alone. The improved fluid and ion balance during prolonged exercise was associated with increased exercise duration, despite continuing sweating losses of fluid and ions. Nasogastric administration of radiotracer Na and K showed rapid absorption into the blood with plasma levels peaking 45 min after administration, followed by distribution into the extracellular space and intracellular fluid of muscle within 1 h. Following exercise, virtually all Na remained within the extracellular compartment, while the majority of K underwent intracellular uptake by 2 h of recovery. It is concluded that pre-loading with a large volume, balanced electrolyte supplement helps maintain whole-body fluid and ion balance and support muscle function during periods of prolonged sweat ion losses.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP281648DOI Listing

Publication Analysis

Top Keywords

fluid ion
20
electrolyte supplement
20
fluid
13
exercise recovery
12
sweating losses
12
extracellular fluid
12
increased exercise
12
electrolyte supplementation
12
exercise
10
electrolyte
9

Similar Publications

Portable sensor technologies are indispensable in personalized healthcare and environmental monitoring as they enable the continuous tracking of key analytes. Human sweat contains valuable physiological information, and previously developed noninvasive sweat-based sensors have effectively monitored single or multiple biomarkers. By successfully detecting biochemicals in sweat, portable sensors could also significantly broaden their application scope, encompassing non-biological fluids commonly encountered in daily life, such as mineral water.

View Article and Find Full Text PDF

Under various atmospheric conditions, laser-induced breakdown spectroscopy (LIBS) is a powerful technique for elemental analysis, including in Earth- and Mars-like environments. However, understanding the plasma behavior and its dependence on ambient pressure and laser parameters remains a challenge. In this study, a numerical model based on a three-temperature Eulerian radiation framework under non-local thermodynamic equilibrium conditions is employed to investigate the interaction of a nanosecond laser pulse with a graphite target under helium (He) and carbon dioxide (CO atmospheres.

View Article and Find Full Text PDF

One of the leading challenges in Water Resource Recovery Facility monitoring and control is the poor data quality and sensor consistency due to the tough and complex circumstances of the process operation. This paper presents a new principal component analysis fault detection approach for the nitrate and nitrite concentration sensor based on Water Resource Recovery Facility measurements, together with the Fisher Discriminant Analysis identification of fault types. Five malfunction cases were considered: constant additive error, ramp changing error in time, incorrect amplification error, random additive error, and unchanging sensor value error.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an engineered biomaterial that closely resembles the hard tissue composition of humans. Biological HA is commonly non-stoichiometric and features lower crystallinity and higher solubility than stoichiometric HA. The chemical compositions of these biomaterials include calcium (Ca), phosphorus (P), and trace amounts of various ions such as magnesium (Mg), zinc (Zn), and strontium (Sr).

View Article and Find Full Text PDF

diaTracer enables spectrum-centric analysis of diaPASEF proteomics data.

Nat Commun

January 2025

Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Data-independent acquisition has become a widely used strategy for peptide and protein quantification in liquid chromatography-tandem mass spectrometry-based proteomics studies. The integration of ion mobility separation into data-independent acquisition analysis, such as the diaPASEF technology available on Bruker's timsTOF platform, further improves the quantification accuracy and protein depth achievable using data-independent acquisition. We introduce diaTracer, a spectrum-centric computational tool optimized for diaPASEF data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!