Cerebral infarction (CI) has become a leading cause of death in China. Long non-coding RNAs (lncRNAs) are intensively involved in the progression of CI. Here, we aimed to investigate the effects of lncRNA LOC366613 (LOC366613) on cerebral I/R injury, as well as its possible mechanism. Transient middle cerebral artery occlusion (MCAO) was used to establish a mouse model of cerebral I/R, and the PC12 cell line was used to establish an oxygen-glucose deprivation (OGD) injury model. The MTT assay was used to determine cell viability, and qRT-PCR was used to determine RNA levels. Western blotting was conducted to detect protein expression levels. The TUNEL assay and flow cytometry were used to measure cell apoptosis, and 2,3,5-triphenyltetrazolium chloride (TTC) was used to determine cerebral infarct volume. Finally, RNA pull-down and luciferase activity assays were used to examine interactions between miR-532-5p and LOC366613, as well as between miR-532-5p and phosphatase and tensin homolog (PTEN). LOC366613 was overexpressed in patients with cerebral I/R injury. In PC12 cells, knockdown of LOC366613 reduced the apoptosis rate and lactic acid dehydrogenase (LDH) expression, while increasing cell viability. Moreover, miR-532-5p was shown to be a target of LOC366613, as predicted. Downregulation of miR-532-5p reversed the effects of LOC366613 knockdown on PC12 cell apoptosis, LDH release, and cell viability. Finally, was verified as a target of miR-532-5p. LOC366613 participates in cerebral I/R injury by regulating the miR-532-5p/ axis, potentially providing a new CI treatment target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806633PMC
http://dx.doi.org/10.1080/21655979.2021.1930966DOI Listing

Publication Analysis

Top Keywords

cerebral i/r
16
i/r injury
12
cell viability
12
loc366613
9
long non-coding
8
cerebral
8
injury regulating
8
tensin homolog
8
pc12 cell
8
cell apoptosis
8

Similar Publications

Starting from the metabolic profile of type 2 diabetes mellitus (T2DM), we hypothesized that the mechanisms of ¹³¹I-induced cardiotoxicity differ between patients diagnosed with differentiated thyroid cancer (DTC) with/without T2DM, with metformin potentially acting as a cardioprotective agent by mitigating inflammation in patients with T2DM. To address this hypothesis, we quantified, using ELISA, the serum concentration of several key biomarkers that reflect cardiac injury (NT-proBNP, NT-proANP, ST2/IL-33R, and cTn I) in 74 female patients with DTC/-T2DM and 25 with DTC/+T2DM treated with metformin. All patients received a cumulative oral dose of I exceeding 150 mCi (5.

View Article and Find Full Text PDF

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF

Neurocan regulates axon initial segment organization and neuronal activity.

Matrix Biol

January 2025

German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:

The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.

View Article and Find Full Text PDF

Mitochondrial dysfunction has been reported to participate in the pathophysiological processes of cerebral ischaemia-reperfusion injury, which include reduced energy homeostasis, increased generation of oxidative stress species (ROS) and the release of apoptotic factors. Oxyglutamate carrier (OGC) is an important carrier protein on the inner mitochondrial membrane that can transport metabolites from the cytoplasm to the mitochondria. The role of OGC in cerebral ischaemia-reperfusion injury (I/R) remains unknown.

View Article and Find Full Text PDF

L. protects cerebral ischemia/reperfusion injury via arachidonic acid/p53-mediated apoptosis axis.

Front Pharmacol

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

Introduction: Stroke is a debilitating disease and the second leading cause of death worldwide, of which ischemic stroke is the dominant type. L., also known as safflower, has been used to treat cerebrovascular diseases, especially ischemic stroke in many Asian countries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!