MXene (TiCT) as a Promising Substrate for Methane Storage via Enhanced Gas Hydrate Formation.

J Phys Chem Lett

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China.

Published: July 2021

Methane hydrate (MH) makes it possible to store methane using the cheapest and safest solvent: water. However, the sluggish formation kinetics hinders its practical utilization. Recently, the use of nanomaterials has been suggested as a potential solution; however, there is still a lack of high-efficiency kinetic promotors, and the promoting mechanism remains unclear. Herein, we demonstrated that MXene dispersion is promising for the storage of methane via MH with rapid formation kinetics, high storage capacity, and impressive cyclic stability. MXene can significantly shorten the induction time for MH formation. The enhanced kinetics was achieved by providing extra nucleation sites and enhancing thermal conductivity, although the increased surface tension of MXene dispersion could impede the MH formation via limited mass transfer. We confirmed that the concentration-dependent promoting effect of MXene dispersions results from regulating the assembly of water molecules. The insight of this work can apply to develop high-efficiency additives to control the formation kinetics of MH.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c01649DOI Listing

Publication Analysis

Top Keywords

formation kinetics
12
mxene dispersion
8
formation
6
mxene
5
mxene tict
4
tict promising
4
promising substrate
4
methane
4
substrate methane
4
methane storage
4

Similar Publications

In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.

View Article and Find Full Text PDF

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

Anti-correlation of LacI association and dissociation rates observed in living cells.

Nat Commun

January 2025

Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.

The rate at which transcription factors (TFs) bind their cognate sites has long been assumed to be limited by diffusion, and thus independent of binding site sequence. Here, we systematically test this assumption using cell-to-cell variability in gene expression as a window into the in vivo association and dissociation kinetics of the model transcription factor LacI. Using a stochastic model of the relationship between gene expression variability and binding kinetics, we performed single-cell gene expression measurements to infer association and dissociation rates for a set of 35 different LacI binding sites.

View Article and Find Full Text PDF

The establishment of protective immune responses relies on the ability of terminally differentiated B cells to secrete a broad variety of antigen-specific antibodies with different effector functions. RIF1 is a multifunctional protein that promotes antibody isotype diversification via its DNA end protection activity during class switch recombination. In this study, we showed that RIF1 ablation resulted in increased plasmablast formation ex vivo and enhanced terminal differentiation into plasma cells upon immunization.

View Article and Find Full Text PDF

Tuning Dual Catalytic Active Sites of Pt Single Atoms Paired with High-Entropy Alloy Nanoparticles for Advanced Li-O Batteries.

ACS Nano

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.

To achieve a long cycle life and high-capacity performance for Li-O batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product LiO. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO intermediate (LiO(ads)), while Pt active sites exhibit weak adsorption energy and promote the soluble LiO pathway (LiO(sol)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!