Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent progress in transcriptomics and co-expression networks have enabled us to predict the inference of the biological functions of genes with the associated environmental stress. Microarrays and RNA sequencing (RNA-seq) are the most commonly used high-throughput gene expression platforms for detecting differentially expressed genes between two (or more) phenotypes. Gene co-expression networks (GCNs) are a systems biology method for capturing transcriptional patterns and predicting gene interactions into functional and regulatory relationships. Here, we describe the procedures and tools used to construct and analyze GCN and investigate the integration of transcriptional data with GCN to provide reliable information about the underlying biological mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1534-8_1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!