This study aimed to characterize the surface topography, effect of polishing on surface roughness, residual stresses, and hardness in two glass-ceramic veneers. Fifty-two (52) upper incisors were collected, prepared, and scanned for ceramic veneers. Half of the teeth were restored with veneers made up of feldspathic ceramic (FE), and the other half with zirconia-reinforced lithium silicate ceramic (SZ). All the veneers were designed and milled using a CAD/CAM system and later cemented following the manufacturer's guideline. An optical microscope analyzed the topography of the specimens before and after polishing. The surface roughness was measured using the roughness meter (n=12) and the topographical analysis was carried out using an atomic force microscope (n=6). The residual stresses and Vickers' hardness were evaluated by the indentation method in a micro-hardness indenter (n=6). The surface roughness was analyzed using a three-way analysis of variance (ANOVA) followed by a post hoc Tukey test. The Student t-test was used to compare the residual stresses and hardness between the two ceramics. The topographical analysis revealed that both glass-ceramic veneers had similar percentages of specimens with cracks, before (34.6%) and after (42.3%) polishing. The surface roughness decreased after polishing (p<0.001), and the polishing smoothed out the surface of the veneers. The zirconia-reinforced lithium silicate veneer had a lower roughness as compared to the feldspathic one after polishing, while the residual stresses (p=0.722) and hardness (p=0.782) were statistically similar for both ceramic veneers.

Download full-text PDF

Source
http://dx.doi.org/10.2341/20-067-LDOI Listing

Publication Analysis

Top Keywords

surface roughness
16
glass-ceramic veneers
12
polishing surface
12
residual stresses
12
stresses hardness
8
ceramic veneers
8
topographical analysis
8
veneers
6
surface
5
roughness
5

Similar Publications

Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free BiNaTiO is gaining importance in showing an alternative to lead-based devices. Here we show that ()BiNaTiO - BaZr Ti O (best: 0.

View Article and Find Full Text PDF

Purpose: To compare the color alteration, surface roughness and microhardness and cross-sectional microhardness of bovine enamel treated with at-home whitening strips and gels.

Materials And Methods: Sixty-six pigmented specimens (n = 11) were allocated to six groups: C-cotton wool moistened with distilled water for 1 h; SDS-sodium dithionite strip, for 1 h; HPS-6.5% hydrogen peroxide strip, for 1 h; CPS-20% carbamide peroxide strip, for 1 h; HPG-7.

View Article and Find Full Text PDF

Titanium alloy is known for its low thermal conductivity, small elastic modulus, and propensity for work hardening, posing challenges in predicting surface quality post high-speed milling. Since surface quality significantly influences wear resistance, fatigue strength, and corrosion resistance of parts, optimizing milling parameters becomes crucial for enhancing service performance. This paper proposes a milling parameter optimization method utilizing the snake algorithm with multi-strategy fusion to improve surface quality.

View Article and Find Full Text PDF

Objective: This in vitro study aimed to investigate the effect of five polishing systems on the surface roughness (SR) and color change (CC) of novel bulk-fill composite resins.

Methods: Fifty composite resin samples were prepared for each of the five groups: Stark Bulk Fill, SDR Plus, SonicFill 3, Charisma Bulk Flow One, and Filtek Z250. Each group of composite resins was further subdivided into five subgroups based on the polishing method applied: OptraGloss (OG), OptraGloss combined with Diapolisher paste (OG), OptiDisc (OD), OptiDisc combined with Diapolisher paste (OD), and Occlubrush (OCC) (n = 10).

View Article and Find Full Text PDF

The use of active packaging made from biodegradable polymers can contribute to the environment and to the food industry by increasing the shelf life of their products. This study aimed to produce chitosan-based films incorporated with the invertase enzyme (1, 2, 5, 9, and 10 %) as an alternative to avoid sucrose crystallization in the confectionery industry. The optimum activity of the invertase enzyme was observed at 55 °C and pH 5, thus, the films made with the film-forming solution adjusted to pH 5 and dried at 55 °C were compared with those without pH adjustment and dried at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!