We propose the use of entropy, H, as an indicator of the equilibrium state of a seismically active region (seismic system). The relationship between an increase in H and the occurrence of a great earthquake in a study area can be predicted by acknowledging the irreversible transition of a system. From this point of view, the seismic system evolves from an unstable initial state (due to external stresses) to another, where the stresses have dropped after the earthquake occurred. It is an irreversible transition that entails an increase in entropy. Five seismic episodes were analyzed in the south of the Iberian Peninsula, the Alboran Sea (Mediterranean Sea), and the North of Morocco: two of them of moderate-high magnitude (Al Hoceima, 2004 and 2016) and three of them of moderate-low magnitude (Adra, 1993-1994; Moron, 2007; and Torreperogil, 2012-2013). The results are remarkably in line with the theoretical forecasts; in other words: an earthquake, understood as an irreversible transition, must suppose an increase in entropy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0031844 | DOI Listing |
Gene
January 2025
Department of Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, China.
Objective: Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal interstitial lung disease, characterized by excessive extracellular matrix (ECM) secretion that disrupts normal alveolar structure. This study aims to explore the potential molecular mechanisms underlying the promotion of IPF development.
Methods: Firstly, we compared the transcriptome and single-cell sequencing data from lung tissue samples of patients with IPF and healthy individuals.
Entropy (Basel)
December 2024
Independent Researcher, Leesburg, VA 20176, USA.
Vopson and Lepadatu recently proposed the Second Law of Infodynamics. The law states that while the total entropy increases, information entropy declines over time. They state that the law has applications over a wide range of disciplines, but they leave many key questions unanswered.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
Layered transition metal oxides (LTMOs) are attractive cathode candidates for rechargeable secondary batteries because of their high theoretical capacity. Unfortunately, LTMOs suffer from severe capacity attenuation, voltage decay, and sluggish kinetics, resulting from irreversible lattice oxygen evolution and unstable cathode-electrolyte interface. Besides, LTMOs accumulate surface residual alkali species, like hydroxides and carbonates, during synthesis, limiting their practical application.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.
Energetic materials often possess different polymorphs that exhibit distinguishable performances. As a typical energetic material, hexanitrohexaazaisowurtzitane (CL-20 or HNIW) is one of the most powerful explosives nowadays. Phase transition of CL-20 induced by ubiquitous water vapor leading to an increase in sensitivity and a decrease in energy level is a key bottleneck that limits the widespread application of CL-20-based explosives.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-InSe).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!