The electrochemical oxygen reduction reaction (ORR) is regarded as an attractive alternative to the anthraquinone process for sustainable and on-site hydrogen peroxide (HO) production. It is however hindered by low selectivity due to strong competition from the four-electron ORR and needs efficient catalysts to drive the 2e ORR. Here, an acid oxidation strategy is proposed as an effective strategy to boost the 2e ORR activity of metallic TiC via in-site generation of a surface amorphous oxygen-deficient TiO layer. The resulting a-TiO/TiC exhibits a low overpotential and high HO selectivity (94.1% at 0.5 V vs reversible hydrogen electrode (RHE)), and it also demonstrates robust stability with a remarkable productivity of 7.19 mol g h at 0.30 V vs RHE. The electrocatalytic mechanism of a-TiO/TiC is further revealed by density functional theory calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c09871DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
8
amorphous oxygen-deficient
8
oxygen-deficient tio
8
enhanced electrochemical
4
electrochemical production
4
production two-electron
4
two-electron oxygen
4
reduction enabled
4
enabled surface-derived
4
surface-derived amorphous
4

Similar Publications

Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.

View Article and Find Full Text PDF

Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.

View Article and Find Full Text PDF

In situ visualization of interfacial processes at nanoscale in non-alkaline Zn-air batteries.

Nat Commun

December 2024

Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Zn-air batteries (ZABs) present high energy density and high safety but suffer from low oxygen reaction reversibility and dendrite growth at Zn electrode in alkaline electrolytes. Non-alkaline electrolytes have been considered recently for improving the interfacial processes in ZABs. However, the dynamic evolution and reaction mechanisms regulated by electrolytes at both the positive and Zn negative electrodes remain elusive.

View Article and Find Full Text PDF

Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.

View Article and Find Full Text PDF

Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect.

Nat Commun

December 2024

Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.

Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e to the 2e pathway under acidic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!