Acceptor-donor-acceptor structured fused-ring electron acceptors (FREAs) are the most efficient electron acceptors used in organic solar cells. We use density functional theory (DFT), its time-dependent version (TD-DFT), and an intra-molecular charge transfer index to evaluate the nature of the excited states of FREAs. Typically, several efficient electronic transitions contribute to the absorption spectra of FREAs. An investigation of every efficient electronic transition of each FREA is performed based on the electronic density variation in the donor and acceptor moieties of the molecules upon absorbing solar photons. Not all these transitions are equivalent for light-to-electricity conversion. The first transition contributes the most to the absorption spectra. This transition is intense and extremely efficient for light-to-electricity conversion, giving a higher value of intra-molecular charge transfer. For certain effective transitions of FREAs, the phenyl rings in the donor unit behave as the electron-donating units, such as IDT-NTI-2EH, BTCN-M, and MeIC. The foremost finding of the present research work is that the furthermost strong electronic transitions are not essentially the most effective ones for the conversion of sunlight into electricity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp01917aDOI Listing

Publication Analysis

Top Keywords

electron acceptors
12
charge transfer
12
excited states
8
fused-ring electron
8
intra-molecular charge
8
efficient electronic
8
electronic transitions
8
absorption spectra
8
light-to-electricity conversion
8
evaluating nature
4

Similar Publications

Visible-light-promoted azidation/arylation of unactivated alkenes with Togni-N electron donor-acceptor complexes.

Org Biomol Chem

January 2025

Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

A visible-light-promoted azidation/arylation of unactivated alkenes with Togni-N has been achieved, leading to a series of azidated pyrrolo[1,2-]indoles under photocatalyst-free conditions. Notably, an EDA complex derived from the electron-rich indole derivatives and Togni-N served as the key intermediate in this reaction.

View Article and Find Full Text PDF

The matere bond.

Dalton Trans

January 2025

Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.

This perpective delves into the emerging field of matere bonds, a novel type of noncovalent interaction involving group 7 elements such as manganese, technetium, and rhenium. Matere bonds, a new member of the σ-hole family where metal atoms act as electron acceptors, have been shown experimentally and theoretically to play significant roles in the self-assembly and stabilization of supramolecular structures both in solid-state and solution-phase environments. This perspective article explores the physical nature of these interactions, emphasizing their directionality and structural influence in various supramolecular architectures.

View Article and Find Full Text PDF

Photocatalytic reduction of CO to produce organic fuels is a promising strategy for addressing carbon reduction and energy scarcity. Transition metal carbides (TiCT ) are of particular interest due to their unique layered structures and excellent electrical conductivity. However, the practical application of TiCT is limited by the poor separation efficiency of photogenerated charge carriers and the low migration ability of photogenerated electrons.

View Article and Find Full Text PDF

Non-fused electron acceptors have obtained increasing curiosity in organic solar cells (OSCs) thanks to simple synthetic route and versatile chemical modification capabilities. However, non-fused acceptors with varying quinoxaline core and as-cast device have rarely been explored, and the molecular structure-photovoltaic performance relationship of such acceptors remains unclear. Herein, two non-fused acceptors L19 and L21 with thienyl substituted non-fluorinated/fluorinated quinoxaline core were developed via five-step synthesis.

View Article and Find Full Text PDF

An overcrowded ethylene composed of electron-donating anion, naphthoxide, and electron-accepting cation, acridinium, has been synthesized. It is in equilibrium between a folded conformer having a smaller permanent dipole moment with visible light absorption and a twisted conformer having a larger permanent dipole moment with NIR light absorption. The overcrowded ethylene shows multiple NIR chromisms, such as solvatochromism, thermochromism, mechanochromism, vapochromism, halochromism, and amphoteric electrochromisms, which are caused by the conformational change between folded and twisted conformers or by controlling the energy difference between the HOMO of the donor moiety and the LUMO of the acceptor moiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!