An exosome-mimicking membrane hybrid nanoplatform for targeted treatment toward Kras-mutant pancreatic carcinoma.

Biomater Sci

Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China.

Published: August 2021

Pancreatic carcinoma elevates quickly and thus has a high mortality rate. Therefore, early treatment is essential for treating pancreatic carcinoma. KRAS is the most frequently identified and one of the earliest mutations in pancreatic tumorigenesis. Thus, the KRAS-mutant cell is an ideal target for the treatment of pancreatic carcinoma, especially at the early stage. KRAS mutation increases macropinocytosis in pancreatic cancer cells, enhancing the internalization of exosomes. Because acquiring natural exosomes could be laborious and their encapsulation efficiency is often unsatisfactory, we aimed to develop a delivery system that mimics the Kras-mutant cell targeting capability of exosomes but is easier to generate and has better loading efficiency. For this purpose, we constructed a hybrid nanoplatform by fusing CLT (Celastrol)-Loaded PEGylated lipids with the DC2.4 cell membrane (M-LIP-CLT) to achieve targeted treatment of Kras-mutant pancreatic cancer. This hybrid nanoplatform improved CLT tumor accumulation and showed excellent anti-cancer efficiency both in vitro and in vivo with increased safety. These results suggest that M-LIP-CLT is an effective drug delivery system for targeted therapy against pancreatic carcinoma, and the fusion strategy showed attractive potential for further development.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1bm00446hDOI Listing

Publication Analysis

Top Keywords

pancreatic carcinoma
20
hybrid nanoplatform
12
targeted treatment
8
treatment kras-mutant
8
pancreatic
8
kras-mutant pancreatic
8
kras-mutant cell
8
pancreatic cancer
8
delivery system
8
carcinoma
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!