Review of the potential of mesenchymal stem cells for the treatment of infectious diseases.

World J Stem Cells

Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.

Published: June 2021

The therapeutic value of mesenchymal stem cells (MSCs) for the treatment of infectious diseases and the repair of disease-induced tissue damage has been explored extensively. MSCs inhibit inflammation, reduce pathogen load and tissue damage encountered during infectious diseases through the secretion of antimicrobial factors for pathogen clearance and they phagocytose certain bacteria themselves. MSCs dampen tissue damage during infection by downregulating the levels of pro-inflammatory cytokines, and inhibiting the excessive recruitment of neutrophils and proliferation of T cells at the site of injury. MSCs aid in the regeneration of damaged tissue by differentiating into the damaged cell types or by releasing paracrine factors that direct tissue regeneration, differentiation, and wound healing. In this review, we discuss in detail the various mechanisms by which MSCs help combat pathogens, tissue damage associated with infectious diseases, and challenges in utilizing MSCs for therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246252PMC
http://dx.doi.org/10.4252/wjsc.v13.i6.568DOI Listing

Publication Analysis

Top Keywords

infectious diseases
16
tissue damage
16
mesenchymal stem
8
stem cells
8
treatment infectious
8
mscs
6
tissue
6
review potential
4
potential mesenchymal
4
cells treatment
4

Similar Publications

The first evidence that Orthopoxvirus induced the expansion and the recall of effector innate Vδ2T-cells was described in a macaque model. Although, an engagement of αβ T-cells specific response in patients infected with human monkeypox (Mpox) was demonstrated, little is known about the role of γδ T-cells during Mpox infection. IFN-γ-producing γδ T-cells in the resistance to poxviruses may a key role in inducing a protective type 1 memory immunity.

View Article and Find Full Text PDF

Early Dynamics of Portal Pressure Gradient After TIPS Insertion Predict Mortality.

Aliment Pharmacol Ther

January 2025

Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Friedrich-Schiller-University, Jena, Germany.

Background: Transjugular intrahepatic portosystemic shunt (TIPS) placement leads to a reduction in portal pressure and an improvement in survival in patients with recurrent and refractory ascites and variceal haemorrhage. Prediction of post-TIPS survival is primarily determined by factors identified before the TIPS procedure, as data collected during or after TIPS implantation are limited. The aim of the study was to evaluate the influence of early hemodynamic changes after TIPS placement on survival, in order to refine post TIPS management.

View Article and Find Full Text PDF

Background: Certain micronutrient levels have been associated with the risk of developing TB disease. We explored the possible association of selected at-risk micronutrient levels with the development of Mycobacterium tuberculosis (M.tb) infection.

View Article and Find Full Text PDF

Background: Snakebite is a priority neglected tropical disease, but incidence data are lacking; current estimates rely upon incomplete health facility reports or ad hoc surveys. Spatial analysis methods harness statistical associations between case incidence and spatially varying factors to improve estimates. This systematic review aimed to identify variables associated with snakebite risk in spatial and temporal analyses for inclusion in geospatial studies to improve risk estimation accuracy.

View Article and Find Full Text PDF

Reevaluating Anti-Inflammatory Therapy: Targeting Senescence to Balance Anti-Cancer Efficacy and Vascular Disease.

Arterioscler Thromb Vasc Biol

January 2025

Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston. (B.C.-C., N.A.V.G., N.L.P., L.P.E., V.S.K.S., A.M.O., J.L., G.M., O.H., A.D., S.W.Y., C.A.I., K.C.O.M., S. Kotla, J.-i.A.).

Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!