Stem cells are undifferentiated cells that can self-renew and differentiate into diverse types of mature and functional cells while maintaining their original identity. This profound potential of stem cells has been thoroughly investigated for its significance in regenerative medicine and has laid the foundation for cell-based therapies. Regenerative medicine is rapidly progressing in healthcare with the prospect of repair and restoration of specific organs or tissue injuries or chronic disease conditions where the body's regenerative process is not sufficient to heal. In this review, the recent advances in stem cell-based therapies in regenerative medicine are discussed, emphasizing mesenchymal stem cell-based therapies as these cells have been extensively studied for clinical use. Recent applications of artificial intelligence algorithms in stem cell-based therapies, their limitation, and future prospects are highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246250PMC
http://dx.doi.org/10.4252/wjsc.v13.i6.521DOI Listing

Publication Analysis

Top Keywords

cell-based therapies
20
stem cell-based
16
regenerative medicine
16
applications artificial
8
artificial intelligence
8
stem cells
8
therapies regenerative
8
cell-based
5
therapies
5
regenerative
5

Similar Publications

Background: Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS.

View Article and Find Full Text PDF

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.

View Article and Find Full Text PDF

Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii.

Sci Rep

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.

View Article and Find Full Text PDF

Fangchinoline eliminates intracellular Salmonella by enhancing lysosomal function via the AMPK-mTORC1-TFEB axis.

J Adv Res

January 2025

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China. Electronic address:

Introduction: Salmonella, a foodborne zoonotic pathogen, is a significant cause of morbidity and mortality in animals and humans globally. With the prevalence of multidrug-resistant strains, Salmonellosis has become a formidable challenge. Host-directed therapy (HDT) has recently emerged as a promising anti-infective approach for treating intracellular bacterial infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!