The pathogenesis of heterogeneity in gastric cancer (GC) is not clear and presents as a significant obstacle in providing effective drug treatment. We aimed to identify subtypes of GC and explore the underlying pathogenesis. We collected two microarray datasets from GEO (GSE84433 and GSE84426), performed an unsupervised cluster analysis based on gene expression patterns, and identified related immune and stromal cells. Then, we explored the possible molecular mechanisms of each subtype by functional enrichment analysis and identified related hub genes. First, we identified three clusters of GC by unsupervised hierarchical clustering, with average silhouette width of 0.96, and also identified their related representative genes and immune cells. We validated our findings using dataset GSE84426. Subtypes associated with the highest mortality (subtype 2 in the training group and subtype C in the validation group) showed high expression of SPARC, COL3A1, and CCN. Both subtypes also showed high infiltration of fibroblasts, endothelial cells, hematopoietic stem cells, and a high stromal score. Furthermore, subtypes with the best prognosis (subtype 3 in the training group and subtype A in the validation group) showed high expression of FGL2, DLGAP1-AS5, and so on. Both subtypes also showed high infiltration of CD4 T cells, CD8 T cells, NK cells, pDC, macrophages, and CD4 T effector memory cells. We found that GC can be classified into three subtypes based on gene expression patterns and cell composition. Findings of this study help us better understand the tumor microenvironment and immune milieu associated with heterogeneity in GC and provide practical information to guide personalized treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264374 | PMC |
http://dx.doi.org/10.3389/fphar.2021.692454 | DOI Listing |
Glob Health Action
December 2024
Faculty of Health Sciences, School of Medicine, Universidad Continental, Lima, Peru.
Background: Human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) have evolved into a global development burden, with nearly 40 million infections and 25 million deaths. Compared to other age groups, youth have increased risks of contracting the disease due to social and health structural factors; thus, additional efforts are needed to effectively tackle the challenges associated with this age group. Epidemiological studies employing unsupervised learning techniques are essential for shaping public health policies.
View Article and Find Full Text PDFSci Rep
January 2025
Inserm, Gustave Roussy, Centre for Research in Epidemiology and Population Health (CESP), "Exposome, Heredity, Cancer, and Health" Team, Université Paris-Saclay, UVSQ, 12 Avenue Paul Vaillant Couturier, 94805, Villejuif, France.
Persistent organic pollutants (POPs) are a group of organic chemical compounds. Contradictory results have emerged in epidemiological studies attempting to elucidate their relationship with breast cancer risk. This study explored the relationship between dietary exposures to multiple POPs and ER-positive breast cancer risk in the French E3N cohort study, using three different approaches to handle multicollinearity among exposures.
View Article and Find Full Text PDFCell Rep Methods
January 2025
Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:
Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Geosciences, Yangtze University, Wuhan 430100, China.
Roadside tree segmentation and parameter extraction play an essential role in completing the virtual simulation of road scenes. Point cloud data of roadside trees collected by LiDAR provide important data support for achieving assisted autonomous driving. Due to the interference from trees and other ground objects in street scenes caused by mobile laser scanning, there may be a small number of missing points in the roadside tree point cloud, which makes it familiar for under-segmentation and over-segmentation phenomena to occur in the roadside tree segmentation process.
View Article and Find Full Text PDFCell clustering is an essential step in uncovering cellular architectures in single cell RNA-sequencing (scRNA-seq) data. However, the existing cell clustering approaches are not well designed to dissect complex structures of cellular landscapes at a finer resolution. Here, we develop a multi-scale clustering (MSC) approach to construct sparse cell-cell correlation network for identifying de novo cell types and subtypes at multiscale resolution in an unsupervised manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!