Diabetic kidney disease (DKD) is the leading cause of end-stage renal failure, but therapeutic options for nephroprotection are limited. Oxidative stress plays a key role in the pathogenesis of DKD. Our previous studies demonstrated that tetramethylpyrazine nitrone (TBN), a novel nitrone derivative of tetramethylpyrazine with potent free radical-scavenging activity, exerted multifunctional neuroprotection in neurological diseases. However, the effect of TBN on DKD and its underlying mechanisms of action are not yet clear. Herein, we performed streptozotocin-induced rat models of DKD and found that TBN administrated orally twice daily for 6 weeks significantly lowered urinary albumin, N-acetyl-β-D-glycosaminidase, cystatin C, malonaldehyde, and 8-hydroxy-2'-deoxyguanosine levels. TBN also ameliorated renal histopathological changes. More importantly, in a nonhuman primate model of spontaneous stage III DKD, TBN increased the estimated glomerular filtration rate, decreased serum 3-nitrotyrosine, malonaldehyde and 8-hydroxy-2'-deoxyguanosine levels, and improved metabolic abnormalities. In HK-2 cells, TBN increased glycolytic and mitochondrial functions. The protective mechanism of TBN might involve the activation of AMPK/PGC-1α-mediated downstream signaling pathways, thereby improving mitochondrial function and reducing oxidative stress in the kidneys of DKD rodent models. These results support the clinical development of TBN for the treatment of DKD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264657 | PMC |
http://dx.doi.org/10.3389/fphar.2021.680336 | DOI Listing |
Sci Rep
December 2024
Department of Power Engineering and Transportation, University of Life Sciences in Lublin, Gleboka 28, 20-612, Lublin, Poland.
Engine oil is a valuable source of information on the technical condition of the drive unit. Under the influence of many factors, including operating conditions, time, high temperature, and various types of contamination, the oil gradually degrades, which can result in serious engine damage. The subject of the article focuses on an attempt to answer the questions of how engine failure affects the degradation of engine oil and whether we can use this knowledge to detect potential problems in public transport vehicles at an early stage.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia.
World Neurosurg
January 2025
The Spinal Fusion Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Objective: To 1) create a novel tissue-engineered bone graft comprising the osteoinductive oxysterol Oxy133 and 2) compare the osteogenic capability of this novel bone graft with bone graft substitutes previously examined.
Methods: Oxy133 was homogeneously incorporated into a biomimetic (BioMim) bone graft substitute comprising extracellular matrix and calcium phosphates. Two iterations of the graft were created: one corresponding to an implant-dose of 2.
Eur J Pediatr Surg
December 2024
Department of Pediatric Surgery Unit, Giannina Gaslini Children's Hospital, Genova, Liguria, Italy.
Plast Reconstr Surg Glob Open
November 2024
From the Department of Pediatric Surgery, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!