There are two key requirements for medical lesion image super-resolution reconstruction in intelligent healthcare systems: clarity and reality. Because only clear and real super-resolution medical images can effectively help doctors observe the lesions of the disease. The existing super-resolution methods based on pixel space optimization often lack high-frequency details which result in blurred detail features and unclear visual perception. Also, the super-resolution methods based on feature space optimization usually have artifacts or structural deformation in the generated image. This paper proposes a novel pyramidal feature multi-distillation network for super-resolution reconstruction of medical images in intelligent healthcare systems. Firstly, we design a multi-distillation block that combines pyramidal convolution and shallow residual block. Secondly, we construct a two-branch super-resolution network to optimize the visual perception quality of the super-resolution branch by fusing the information of the gradient map branch. Finally, we combine contextual loss and L1 loss in the gradient map branch to optimize the quality of visual perception and design the information entropy contrast-aware channel attention to give different weights to the feature map. Besides, we use an arbitrary scale upsampler to achieve super-resolution reconstruction at any scale factor. The experimental results show that the proposed super-resolution reconstruction method achieves superior performance compared to other methods in this work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255340PMC
http://dx.doi.org/10.1007/s00521-021-06287-xDOI Listing

Publication Analysis

Top Keywords

super-resolution reconstruction
16
intelligent healthcare
12
healthcare systems
12
visual perception
12
super-resolution
10
image super-resolution
8
pyramidal feature
8
feature multi-distillation
8
medical images
8
super-resolution methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!