Six-Sigma Quality Management of Additive Manufacturing.

Proc IEEE Inst Electr Electron Eng

Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802 USA.

Published: April 2021

Quality is a key determinant in deploying new processes, products, or services and influences the adoption of emerging manufacturing technologies. The advent of additive manufacturing (AM) as a manufacturing process has the potential to revolutionize a host of enterprise-related functions from production to the supply chain. The unprecedented level of design flexibility and expanded functionality offered by AM, coupled with greatly reduced lead times, can potentially pave the way for mass customization. However, widespread application of AM is currently hampered by technical challenges in process repeatability and quality management. The breakthrough effect of six sigma (6S) has been demonstrated in traditional manufacturing industries (e.g., semiconductor and automotive industries) in the context of quality planning, control, and improvement through the intensive use of data, statistics, and optimization. 6S entails a data-driven DMAIC methodology of five steps-define, measure, analyze, improve, and control. Notwithstanding the sustained successes of the 6S knowledge body in a variety of established industries ranging from manufacturing, healthcare, logistics, and beyond, there is a dearth of concentrated application of 6S quality management approaches in the context of AM. In this article, we propose to design, develop, and implement the new DMAIC methodology for the 6S quality management of AM. First, we define the specific quality challenges arising from AM layerwise fabrication and mass customization (even one-of-a-kind production). Second, we present a review of AM metrology and sensing techniques, from materials through design, process, and environment, to postbuild inspection. Third, we contextualize a framework for realizing the full potential of data from AM systems and emphasize the need for analytical methods and tools. We propose and delineate the utility of new data-driven analytical methods, including deep learning, machine learning, and network science, to characterize and model the interrelationships between engineering design, machine setting, process variability, and final build quality. Fourth, we present the methodologies of ontology analytics, design of experiments (DOE), and simulation analysis for AM system improvements. In closing, new process control approaches are discussed to optimize the action plans, once an anomaly is detected, with specific consideration of lead time and energy consumption. We posit that this work will catalyze more in-depth investigations and multidisciplinary research efforts to accelerate the application of 6S quality management in AM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269016PMC
http://dx.doi.org/10.1109/JPROC.2020.3034519DOI Listing

Publication Analysis

Top Keywords

quality management
20
additive manufacturing
8
quality
8
mass customization
8
dmaic methodology
8
application quality
8
analytical methods
8
manufacturing
6
management
5
process
5

Similar Publications

External Validation of a 5-Factor Risk Model for Breast Cancer-Related Lymphedema.

JAMA Netw Open

January 2025

Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

Importance: Secondary lymphedema is a common, harmful side effect of breast cancer treatment. Robust risk models that are externally validated are needed to facilitate clinical translation. A published risk model used 5 accessible clinical factors to predict the development of breast cancer-related lymphedema; this model included a patient's mammographic breast density as a novel predictive factor.

View Article and Find Full Text PDF

Dust emissions from open-pit mining pose a significant threat to environmental safety and human health. Currently, the range of dust suppressants used in coal mining is limited, often failing to account for their suitability across various stockpiles. This oversight results in poor infiltration after application, leading to insufficient crust formation and reduced durability.

View Article and Find Full Text PDF

Introduction: Cesarean deliveries account for approximately one-third of all births in Germany, prompting ongoing discussions on cesarean section rates and their connection to medical staffing and birth volume. In Germany, the majority of departments integrate obstetric and gynecological care within a single department.

Methods: The analysis utilized quality reports from German hospitals spanning 2015 to 2019.

View Article and Find Full Text PDF

Chordoma is a rare malignant tumor with a higher incidence in males than in females. There is an increasing number of clinical studies related to tyrosine kinase inhibitors (TKIs), yet the efficacy and safety of different drugs vary. In this single-arm meta-analysis evaluating the efficacy and safety of TKIs for chordoma treatment, 12 studies involving 365 patients were analyzed.

View Article and Find Full Text PDF

Assessing water quality restoration measures in Lake Pampulha (Brazil) through remote sensing imagery.

Environ Sci Pollut Res Int

January 2025

LEESU, Ecole des Ponts Paris Tech, UPEC, AgroParisTech, F-77455 Marne-la-Vallée, Paris, France.

Urban reservoirs are frequently exposed to impacts from high population density, polluting activities, and the absence of environmental control measures and monitoring. In this study, we investigated the use of satellite imagery to assess restoration measures and support decision-making in a hypereutrophic urban reservoir. Since 2016, Lake Pampulha (Brazil) has undergone restoration measures, including the application of Phoslock®, to mitigate its poor water quality conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!