Cell cycle quiescence is a fundamental property of hematopoietic stem cells (HSCs). Quiescent HSCs form a healthy pool of cells that serve as a reserve for massive HSC expansion under various conditions of stress. We previously reported that thrombopoietin (THPO) maintains quiescent HSCs and stimulates mitochondrial metabolism, megakaryocyte-lineage differentiation, and proliferation of HSCs. The underlying mechanism by which THPO balances its contradictory effect of promoting proliferation or quiescence on HSCs remains unknown. This review explores the role of THPO signaling in HSC differentiation and quiescence regulation. We present our data, which suggests that a THPO-independent HSC subpopulation sustaining a low mitochondrial metabolic profile reverts to quiescence and regains stem cell potential with external stimuli. There is a possibility that THPO-independent HSCs form a non-quiescent reserve HSC pool from which quiescent HSCs originate in the adult bone marrow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11406/rinketsu.62.521 | DOI Listing |
Am J Physiol Cell Physiol
January 2025
Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
The activation of hepatic stellate cells (HSCs) from a quiescent state is a cause of liver fibrosis and a therapeutic target. HSCs are resident mesenchymal cells located in the space of Disse, exhibiting specialized morphological characteristics such as a stellate shape, large lipid droplets, and direct adhesions to hepatocytes via microprojections called HSC spines. Morphological alterations in HSCs play a crucial role in initiating their activation.
View Article and Find Full Text PDFLeukemia
January 2025
Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany.
Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs.
View Article and Find Full Text PDFCell Rep
January 2025
Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Hepatic stellate cells (HSCs) are key drivers of local fibrosis. Adiponectin, conventionally thought of as an adipokine, is also expressed in quiescent HSCs. However, the impact of its local expression on the progression of liver fibrosis remains unclear.
View Article and Find Full Text PDFJHEP Rep
January 2025
Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium.
Cell Stem Cell
December 2024
Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for β-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here, we compare combined CRISPR-Cas9 editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. Dual targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two single guide RNAs (sgRNAs) resulted in superior HbF induction, including in sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!