Fabrication of large size individual octahedral tungsten oxide hydrate and Au NPs as SERS platforms for sensitive detection of cytochrome C.

Anal Chim Acta

Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China. Electronic address:

Published: August 2021

Surface-enhanced Raman scattering (SERS) has attracted much attention with its powerful trace detection and analysis capabilities, especially biological and environmental molecules. However, building a protein SERS detection platform based on semiconductor devices is a huge challenge. Herein, through the synergy of NH and nickel foam, a large-sized semiconductor tungsten oxide hydrate platform (WOHP) was synthesized. The crystal plane of a single WOHP particle is larger than the excitation spot. As a SERS substrate, WOHP can make full use of the excitation light without destroying the structure during the protein molecules detection process. Through the synergy of WOHP and Au NPs, the enhancement factor is 1.5 × 10. Raman peaks of WOHP can be used as references for the detection of typical protein cytochrome C (Cyt C). As the Cyt C concentration decreases, the I/I ratio decreases, and the signal can still be obtained when the concentration is as low as 5 × 10 mol L. More importantly, the method does not affect the catalytic activity of Cyt C and can be applied to the detection of Cyt C concentration in serum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.338711DOI Listing

Publication Analysis

Top Keywords

tungsten oxide
8
oxide hydrate
8
cyt concentration
8
detection
6
wohp
5
fabrication large
4
large size
4
size individual
4
individual octahedral
4
octahedral tungsten
4

Similar Publications

Oxygen vacancy-rich defective tungsten oxide (WO) modified by Prussian blue for efficient photocatalytic carbon dioxide conversion and tetracycline degradation.

J Colloid Interface Sci

December 2024

Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece. Electronic address:

The coupling of carbon dioxide (CO) with epoxides to produce cyclic carbonates is a desirable decarbonization approach, but its commercial applicability is still restricted by the costly catalysts required, as well as the need for high temperature and high pressure. Herein, oxygen vacancy-rich defective tungsten oxide (WO) rich in Lewis acid sites was modified by Prussian blue (PB), and the obtained composite reaches up to 94 % styrene carbonate yield (171 mmol gh) at ambient temperature and pressure, exhibiting outstanding advantages in the photocatalytic CO cycloaddition reaction compared with currently reported photocatalysts. It is found that the introduction of PB with photothermal properties significantly enhances the capability of WO to absorb and activate CO and epoxide, along with its light utilization ability.

View Article and Find Full Text PDF

An Efficient and Flexible Bifunctional Dual-Band Electrochromic Device Integrating with Energy Storage.

Nanomicro Lett

December 2024

Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.

Dual-band electrochromic devices capable of the spectral-selective modulation of visible (VIS) light and near-infrared (NIR) can notably reduce the energy consumption of buildings and improve the occupants' visual and thermal comfort. However, the low optical modulation and poor durability of these devices severely limit its practical applications. Herein, we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life, but also displays a high capacitance and a high energy recycling efficiency of 51.

View Article and Find Full Text PDF

The crystal phase of pseudocapacitive materials significantly influences charge storage kinetics and capacitance; yet, the underlying mechanisms remain poorly understood. This study focuses on tungsten oxide (WO), a material exhibiting multiple crystal phases with potential for energy storage. Despite extensive research on WO, the impact of different crystal structures on charge storage properties remains largely unexplored.

View Article and Find Full Text PDF

Vacancy engineering in tungsten oxide nanofluidic membranes for high-efficiency light-driven ion transport.

J Colloid Interface Sci

December 2024

Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China. Electronic address:

Bioinspired light-driven ion transport has shown great potential in solar energy harvesting. To achieve efficiencies comparable to biological counterparts, effective coregulation of permselectivity and photoresponsivity is crucial. Herein, vacancy engineering has been proven to be a powerful strategy for considerably increasing the efficiency of light-driven ion transport in tungsten oxide (WO) nanofluidic membranes by enhancing the negative surface charges and narrowing bandgaps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!