In the last decade, unprecedented arrivals of pelagic Sargassum (Sargassum influx) have been reported for the Caribbean coasts causing severe ecological and economical affectations and remarking the necessity to characterize the phenomenon. In the north coast of the Mexican Caribbean, spatial characterization of Sargassum influx was performed in terms of its abundance, species composition and chemical content using a combination of in situ sampling and remote sensing evaluations. Sargassum influx was detected within the 25 km fringe near to Quintana Roo coast in coincidence with beach-cast events during September 2018. Significant spatial variation in abundance and species composition of the stranded biomass was found for the six localities studied, which was related to the local environmental conditions. Pelagic species of Sargassum were the main component ranging from 78.1 to 99.6% of the total beach-cast (wrack) fresh biomass, whereas benthic macrophytes (seagrasses and macroalgae) were a minor component reaching up to 21% in some localities. The biochemical composition of beach-cast Sargassum resulted spatially homogeneous for most of the components analyzed; only carbon tissue content, ash metals (particularly Fe and As) and isotopic composition changed spatially. This study represents baseline information for the region. Long-term seasonal evaluations of Sargassum influx along Mexican Caribbean are required to define adequate management strategies and exploitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.148852 | DOI Listing |
Mar Environ Res
November 2024
Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157, Ciudad del Carmen, Campeche, Mexico. Electronic address:
Sci Rep
September 2024
Institut Pasteur de Guadeloupe, Vector-Borne Diseases Laboratory, Environment and Health Research Department, Lieu-Dit Morne Jolivière, 97139, Les Abymes, Guadeloupe, France.
Influxes of sargassos are responsible for economic and environmental disasters in areas where they bloom, especially in regions whose main income relies on tourism and with limited capacity for sanitation and public health response. A promising way of valorization would be to convert this incredible biomass into tools to fight the deadly vector mosquito Aedes aegypti. In the present study, we generated hydrolates and aqueous extracts from three main Sargassum morphotypes identified in Guadeloupe (French West Indies): Sargassum natans VIII, Sargassum natans I and Sargassum fluitans.
View Article and Find Full Text PDFBull Environ Contam Toxicol
September 2024
Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas Veracruzanas 101. Col. E. Zapata. CP 91090, Xalapa, Veracruz, México.
The massive influx of Sargassum natans and S. fluitans to the shores of the Mexican Caribbean has raised concerns regarding their potential impact on soil quality and health in coastal and agroecosystems. The effects of Sargassum accumulation remain largely unexplored.
View Article and Find Full Text PDFMar Pollut Bull
May 2024
Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands.
ISME J
January 2024
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
Since 2011, the Caribbean coasts have been subject to episodic influxes of floating Sargassum seaweed of unprecedented magnitude originating from a new area "the Great Atlantic Sargassum Belt" (GASB), leading in episodic influxes and mass strandings of floating Sargassum. For the biofilm of both holopelagic and benthic Sargassum as well as in the surrounding waters, we characterized the main functional groups involved in the microbial nitrogen cycle. The abundance of genes representing nitrogen fixation (nifH), nitrification (amoA), and denitrification (nosZ) showed the predominance of diazotrophs, particularly within the GASB and the Sargasso Sea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!