Value-added materials such as biochar and activated carbon that are produced using thermo-chemical conversion of organic waste have gained an emerging interest for the application in the fields of energy and environment because of their low cost and unique physico-chemical properties. Organic waste-derived materials have multifunctional abilities in the field of environment for capturing greenhouse gases and remediation of contaminated soil and water as well as in the field of energy storage and conversion. This review critically evaluates and discusses the current thermo-chemical approaches for upgrading organic waste to value-added carbon materials, performance enhancement of these materials via activation and/or surface modification, and recent research findings related to energy and environmental applications. Moreover, this review provides detailed guidelines for preparing high-performance organic waste-derived materials and insights for their potential applications. Key challenges associated with the sustainable management of organic waste for ecological and socio-economic benefits and potential solutions are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.113128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!